/* * Copyright (c) 2019-2021, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Edited by Marcos Luciano * https://www.github.com/marcoslucianops */ #include #include "nvdsinfer_custom_impl.h" #include "nvdsinfer_context.h" #include "yolo.h" #define USE_CUDA_ENGINE_GET_API 1 static bool getYoloNetworkInfo(NetworkInfo& networkInfo, const NvDsInferContextInitParams* initParams) { std::string onnxWtsFilePath = initParams->onnxFilePath; std::string darknetWtsFilePath = initParams->modelFilePath; std::string darknetCfgFilePath = initParams->customNetworkConfigFilePath; std::string yoloType = onnxWtsFilePath != "" ? "onnx" : "darknet"; std::string modelName = yoloType == "onnx" ? onnxWtsFilePath.substr(0, onnxWtsFilePath.find(".onnx")).substr(onnxWtsFilePath.rfind("/") + 1) : darknetWtsFilePath.substr(0, darknetWtsFilePath.find(".weights")).substr(darknetWtsFilePath.rfind("/") + 1); std::transform(modelName.begin(), modelName.end(), modelName.begin(), [] (uint8_t c) { return std::tolower(c); }); networkInfo.inputBlobName = "input"; networkInfo.networkType = yoloType; networkInfo.modelName = modelName; networkInfo.onnxWtsFilePath = onnxWtsFilePath; networkInfo.darknetWtsFilePath = darknetWtsFilePath; networkInfo.darknetCfgFilePath = darknetCfgFilePath; networkInfo.batchSize = initParams->maxBatchSize; networkInfo.implicitBatch = initParams->forceImplicitBatchDimension; networkInfo.int8CalibPath = initParams->int8CalibrationFilePath; networkInfo.deviceType = initParams->useDLA ? "kDLA" : "kGPU"; networkInfo.numDetectedClasses = initParams->numDetectedClasses; networkInfo.clusterMode = initParams->clusterMode; networkInfo.scaleFactor = initParams->networkScaleFactor; networkInfo.offsets = initParams->offsets; networkInfo.workspaceSize = initParams->workspaceSize; if (initParams->networkMode == NvDsInferNetworkMode_FP32) networkInfo.networkMode = "FP32"; else if (initParams->networkMode == NvDsInferNetworkMode_INT8) networkInfo.networkMode = "INT8"; else if (initParams->networkMode == NvDsInferNetworkMode_FP16) networkInfo.networkMode = "FP16"; if (yoloType == "onnx") { if (!fileExists(networkInfo.onnxWtsFilePath)) { std::cerr << "ONNX model file does not exist\n" << std::endl; return false; } } else { if (!fileExists(networkInfo.darknetWtsFilePath)) { std::cerr << "Darknet weights file does not exist\n" << std::endl; return false; } else if (!fileExists(networkInfo.darknetCfgFilePath)) { std::cerr << "Darknet cfg file does not exist\n" << std::endl; return false; } } return true; } #if !USE_CUDA_ENGINE_GET_API IModelParser* NvDsInferCreateModelParser(const NvDsInferContextInitParams* initParams) { NetworkInfo networkInfo; if (!getYoloNetworkInfo(networkInfo, initParams)) return nullptr; return new Yolo(networkInfo); } #else #if NV_TENSORRT_MAJOR >= 8 extern "C" bool NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, nvinfer1::IBuilderConfig* const builderConfig, const NvDsInferContextInitParams* const initParams, nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine); extern "C" bool NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, nvinfer1::IBuilderConfig* const builderConfig, const NvDsInferContextInitParams* const initParams, nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine) #else extern "C" bool NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, const NvDsInferContextInitParams* const initParams, nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine); extern "C" bool NvDsInferYoloCudaEngineGet(nvinfer1::IBuilder* const builder, const NvDsInferContextInitParams* const initParams, nvinfer1::DataType dataType, nvinfer1::ICudaEngine*& cudaEngine) #endif { NetworkInfo networkInfo; if (!getYoloNetworkInfo(networkInfo, initParams)) return false; Yolo yolo(networkInfo); #if NV_TENSORRT_MAJOR >= 8 cudaEngine = yolo.createEngine(builder, builderConfig); #else cudaEngine = yolo.createEngine(builder); #endif if (cudaEngine == nullptr) { std::cerr << "Failed to build CUDA engine" << std::endl; return false; } return true; } #endif