# YOLOX usage **NOTE**: The yaml file is not required. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_yolox file](#edit-the-config_infer_primary_yolox-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the YOLOX repo and install the requirements ``` git clone https://github.com/Megvii-BaseDetection/YOLOX.git cd YOLOX pip3 install -r requirements.txt ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `gen_wts_yolox.py` file from `DeepStream-Yolo/utils` directory to the `YOLOX` folder. #### 3. Download the model Download the `pth` file from [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/releases/) releases (example for YOLOX-s standard) ``` wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth ``` **NOTE**: You can use your custom model, but it is important to keep the YOLO model reference (`yolox_`) in you `cfg` and `weights`/`wts` filenames to generate the engine correctly. #### 4. Convert model Generate the `cfg` and `wts` files (example for YOLOX-s standard) ``` python3 gen_wts_yolox.py -w yolox_s.pth -e exps/default/yolox_s.py ``` #### 5. Copy generated files Copy the generated `cfg` and `wts` files to the `DeepStream-Yolo` folder. ## ### Compile the lib Open the `DeepStream-Yolo` folder and compile the lib * DeepStream 6.1.1 on x86 platform ``` CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1 on x86 platform ``` CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.1.1 / 6.1 on Jetson platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * DeepStream 6.0.1 / 6.0 on Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_yolox file Edit the `config_infer_primary_yolox.txt` file according to your model (example for YOLOX-s standard) ``` [property] ... custom-network-config=yolox_s.cfg model-file=yolox_s.wts ... ``` **NOTE**: If you use the **legacy** model, you should edit the `config_infer_primary_yolox_legacy.txt` file. **NOTE**: The **YOLOX standard** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values. ``` net-scale-factor=0 ``` **NOTE**: The **YOLOX legacy** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values. Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225` ``` net-scale-factor=0.0173520735727919486 offsets=123.675;116.28;103.53 ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_yolox.txt ``` **NOTE**: If you use the **legacy** model, you should edit it to `config_infer_primary_yolox_legacy.txt`. ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ```