import os import sys import onnx import paddle import paddle.nn as nn from ppdet.core.workspace import load_config, merge_config from ppdet.utils.check import check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.engine import Trainer from ppdet.slim import build_slim_model from ppdet.data.source.category import get_categories class DeepStreamOutput(nn.Layer): def __init__(self): super().__init__() def forward(self, x): boxes = x['bbox'] x['bbox_num'] = x['bbox_num'].transpose([0, 2, 1]) scores = paddle.max(x['bbox_num'], 2, keepdim=True) classes = paddle.argmax(x['bbox_num'], 2, keepdim=True) return boxes, scores, classes def ppyoloe_export(FLAGS): cfg = load_config(FLAGS.config) FLAGS.opt['weights'] = FLAGS.weights FLAGS.opt['exclude_nms'] = True merge_config(FLAGS.opt) if FLAGS.slim_config: cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test') merge_config(FLAGS.opt) check_config(cfg) check_version() trainer = Trainer(cfg, mode='test') trainer.load_weights(cfg.weights) trainer.model.eval() if not os.path.exists('.tmp'): os.makedirs('.tmp') static_model, _ = trainer._get_infer_cfg_and_input_spec('.tmp') os.system('rm -r .tmp') return trainer.cfg, static_model def main(FLAGS): print('\nStarting: %s' % FLAGS.weights) print('\nOpening PPYOLOE model\n') paddle.set_device('cpu') cfg, model = ppyoloe_export(FLAGS) anno_file = cfg['TestDataset'].get_anno() if os.path.isfile(anno_file): _, catid2name = get_categories(cfg['metric'], anno_file, 'detection_arch') print('\nCreating labels.txt file') f = open('labels.txt', 'w') for name in catid2name.values(): f.write(str(name) + '\n') f.close() model = nn.Sequential(model, DeepStreamOutput()) img_size = [cfg.eval_height, cfg.eval_width] onnx_input_im = {} onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32', name='image') onnx_input_im['scale_factor'] = paddle.static.InputSpec(shape=[FLAGS.batch, 2], dtype='float32', name='scale_factor') onnx_output_file = cfg.filename + '.onnx' print('\nExporting the model to ONNX\n') paddle.onnx.export(model, cfg.filename, input_spec=[onnx_input_im], opset_version=FLAGS.opset) if FLAGS.simplify: print('\nSimplifying the ONNX model') import onnxsim model_onnx = onnx.load(onnx_output_file) model_onnx, _ = onnxsim.simplify(model_onnx) onnx.save(model_onnx, onnx_output_file) print('\nDone: %s\n' % onnx_output_file) def parse_args(): parser = ArgsParser() parser.add_argument('-w', '--weights', required=True, help='Input weights (.pdparams) file path (required)') parser.add_argument('--slim_config', default=None, type=str, help='Slim configuration file of slim method') parser.add_argument('--opset', type=int, default=11, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('\nInvalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('\nCannot set dynamic batch-size and implicit batch-size at same time') elif args.dynamic: args.batch = None return args if __name__ == '__main__': FLAGS = parse_args() sys.exit(main(FLAGS))