# YOLO-NAS usage **NOTE**: The yaml file is not required. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_yolonas file](#edit-the-config_infer_primary_yolonas-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the YOLO-NAS repo and install the requirements ``` git clone https://github.com/Deci-AI/super-gradients.git cd super-gradients pip3 install -r requirements.txt python3 setup.py install pip3 install onnx onnxsim onnxruntime ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `export_yolonas.py` file from `DeepStream-Yolo/utils` directory to the `super-gradients` folder. #### 3. Download the model Download the `pth` file from [YOLO-NAS](https://sghub.deci.ai/) releases (example for YOLO-NAS S) ``` wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth ``` **NOTE**: You can use your custom model. #### 4. Convert model Generate the ONNX model file (example for YOLO-NAS S) ``` python3 export_yolonas.py -m yolo_nas_s -w yolo_nas_s_coco.pth --dynamic ``` **NOTE**: Model names ``` -m yolo_nas_s ``` or ``` -m yolo_nas_m ``` or ``` -m yolo_nas_l ``` **NOTE**: Number of classes (example for 80 classes) ``` -n 80 ``` or ``` --classes 80 ``` **NOTE**: To change the inference size (defaut: 640) ``` -s SIZE --size SIZE -s HEIGHT WIDTH --size HEIGHT WIDTH ``` Example for 1280 ``` -s 1280 ``` or ``` -s 1280 1280 ``` **NOTE**: To simplify the ONNX model (DeepStream >= 6.0) ``` --simplify ``` **NOTE**: To use dynamic batch-size (DeepStream >= 6.1) ``` --dynamic ``` **NOTE**: To use static batch-size (example for batch-size = 4) ``` --batch 4 ``` **NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 14. ``` --opset 12 ``` #### 5. Copy generated file Copy the generated ONNX model file to the `DeepStream-Yolo` folder. ## ### Compile the lib 1. Open the `DeepStream-Yolo` folder and compile the lib 2. Set the `CUDA_VER` according to your DeepStream version ``` export CUDA_VER=XY.Z ``` * x86 platform ``` DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1 ``` * Jetson platform ``` DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2 ``` 3. Make the lib ``` make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_yolonas file Edit the `config_infer_primary_yolonas.txt` file according to your model (example for YOLO-NAS S with 80 classes) ``` [property] ... onnx-file=yolo_nas_s_coco.onnx ... num-detected-classes=80 ... parse-bbox-func-name=NvDsInferParseYoloE ... ``` **NOTE**: If you are using a **custom** model, you should edit the `config_infer_primary_yolonas_custom.txt` file. **NOTE**: The **YOLO-NAS** resizes the input with left/top padding. To get better accuracy, use ``` [property] ... maintain-aspect-ratio=1 symmetric-padding=0 ... ``` **NOTE**: The **pre-trained YOLO-NAS** uses zero mean normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values. ``` [property] ... net-scale-factor=0.0039215697906911373 ... ``` **NOTE**: The **custom YOLO-NAS** uses no normalization on the image preprocess. It is important to change the `net-scale-factor` according to the trained values. ``` [property] ... net-scale-factor=1 ... ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_yolonas.txt ``` ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes). **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.