/* * Created by Marcos Luciano * https://www.github.com/marcoslucianops */ #include inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); } __global__ void gpuYoloLayer_r(const float* input, int* num_detections, float* detection_boxes, float* detection_scores, int* detection_classes, const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors, const int* mask) { uint x_id = blockIdx.x * blockDim.x + threadIdx.x; uint y_id = blockIdx.y * blockDim.y + threadIdx.y; uint z_id = blockIdx.z * blockDim.z + threadIdx.z; if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes) return; const int numGridCells = gridSizeX * gridSizeY; const int bbindex = y_id * gridSizeX + x_id; const float objectness = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]); if (objectness < scoreThreshold) return; int count = (int)atomicAdd(num_detections, 1); const float alpha = scaleXY; const float beta = -0.5 * (scaleXY - 1); float x = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta + x_id) * netWidth / gridSizeX; float y = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) * alpha + beta + y_id) * netHeight / gridSizeY; float w = __powf(sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * 2, 2) * anchors[mask[z_id] * 2]; float h = __powf(sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * 2, 2) * anchors[mask[z_id] * 2 + 1]; float maxProb = 0.0f; int maxIndex = -1; for (uint i = 0; i < numOutputClasses; ++i) { float prob = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]); if (prob > maxProb) { maxProb = prob; maxIndex = i; } } detection_boxes[count * 4 + 0] = x - 0.5 * w; detection_boxes[count * 4 + 1] = y - 0.5 * h; detection_boxes[count * 4 + 2] = x + 0.5 * w; detection_boxes[count * 4 + 3] = y + 0.5 * h; detection_scores[count] = objectness * maxProb; detection_classes[count] = maxIndex; } cudaError_t cudaYoloLayer_r(const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream); cudaError_t cudaYoloLayer_r(const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream) { dim3 threads_per_block(16, 16, 4); dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1, (numBBoxes / threads_per_block.z) + 1); for (unsigned int batch = 0; batch < batchSize; ++batch) { gpuYoloLayer_r<<>>( reinterpret_cast(input) + (batch * inputSize), reinterpret_cast(num_detections) + (batch), reinterpret_cast(detection_boxes) + (batch * 4 * outputSize), reinterpret_cast(detection_scores) + (batch * outputSize), reinterpret_cast(detection_classes) + (batch * outputSize), scoreThreshold, netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, scaleXY, reinterpret_cast(anchors), reinterpret_cast(mask)); } return cudaGetLastError(); }