# Multiple YOLO inferences How to use multiples GIE's on DeepStream ## 1. Download [my native folder](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/native), rename to yolo and move to your deepstream/sources folder. 2. Copy each obj.names to deepstream/sources/yolo directory, renaming file to labels_*.txt (* = pgie/sgie1/sgie2/etc), according to each inference type. 3. Copy each yolo.cfg and yolo.weights files to deepstream/sources/yolo directory, renaming files to yolo_*.cfg and yolo_*.weights (* = pgie/sgie1/sgie2/etc), according to each inference type. 4. Make a copy of config_infer_primary.txt file and rename it to config_infer_secondary*.txt (* = 1/2/3/etc), according to inference order. 5. Edit DeepStream for your custom model, according to each yolo_*.cfg (* = pgie/sgie1/sgie2/etc) file: https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/customModels.md **In example folder, on this repository, have all example files to multiple YOLO inferences.** ## ### Compiling edited models 1. Check your CUDA version (nvcc --version) 2. Go to deepstream/sources/yolo directory. 3. Type command (example for CUDA 10.2 version): ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Add secondary-gie to deepstream_app_config after primary-gie Example for 1 secondary-gie (2 inferences): ``` [secondary-gie0] enable=1 gpu-id=0 gie-unique-id=2 operate-on-gie-id=1 # If you want secodary inference operate on specified class ids of GIE (class ids you want to operate: 1, 1;2, 2;3;4, 3 etc; comment it if you don't want to use) operate-on-class-ids=0 nvbuf-memory-type=0 config-file=config_infer_secondary1.txt ``` Example for 2 secondary-gie (3 inferences): ``` [secondary-gie0] enable=1 gpu-id=0 gie-unique-id=2 operate-on-gie-id=1 operate-on-class-ids=0 nvbuf-memory-type=0 config-file=config_infer_secondary1.txt [secondary-gie1] enable=1 gpu-id=0 gie-unique-id=3 operate-on-gie-id=1 operate-on-class-ids=0 nvbuf-memory-type=0 config-file=config_infer_secondary2.txt ``` ## ### Editing config_infer * Edit config_infer (config_infer_primary, config_infer_secondary1, etc.) files Example for primary ``` custom-network-config=yolo_pgie.cfg model-file=yolo_pgie.weights model-engine-file=pgie_b16_gpu0_fp16.engine labelfile-path=labels_pgie.txt ``` Example for secondary1 ``` custom-network-config=yolo_sgie1.cfg model-file=yolo_sgie1.weights model-engine-file=sgie1_b16_gpu0_fp16.engine labelfile-path=labels_sgie1.txt ``` Example for secondary2 ``` custom-network-config=yolo_sgie2.cfg model-file=yolo_sgie2.weights model-engine-file=sgie2_b16_gpu0_fp16.engine labelfile-path=labels_sgie2.txt ``` ## * Edit gie-unique-id Example for primary ``` gie-unique-id=1 process-mode=1 ``` Example for secondary1 ``` gie-unique-id=2 process-mode=2 ``` Example for secondary2 ``` gie-unique-id=3 process-mode=2 ``` ## * Edit batch-size Example for primary ``` # Number of sources batch-size=1 ``` Example for all secondary: ``` batch-size=16 ``` ### Testing model To run your custom YOLO model, use this command ``` deepstream-app -c deepstream_app_config.txt ``` ** During test process, engine file will be generated. When engine build process is done, rename engine file according to each configured engine name pgie/sgie1/sgie2/etc) in config_infer file.