# RT-DETR Paddle usage **NOTE**: https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_paddle version. * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_rtdetr file](#edit-the-config_infer_primary_rtdetr-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the PaddleDetection repo and install the requirements https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.7/docs/tutorials/INSTALL.md ``` git clone https://github.com/lyuwenyu/RT-DETR.git cd RT-DETR/rtdetr_paddle pip3 install -r requirements.txt pip3 install onnx onnxsim onnxruntime paddle2onnx ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `export_rtdetr_paddle.py` file from `DeepStream-Yolo/utils` directory to the `RT-DETR/rtdetr_paddle` folder. #### 3. Download the model Download the `pdparams` file from [RT-DETR Paddle](https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_paddle) releases (example for RT-DETR-R50) ``` wget https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams ``` **NOTE**: You can use your custom model. #### 4. Convert model Generate the ONNX model file (example for RT-DETR-R50) ``` python3 export_rtdetr_paddle.py -w rtdetr_r50vd_6x_coco.pdparams -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --dynamic ``` **NOTE**: To simplify the ONNX model (DeepStream >= 6.0) ``` --simplify ``` **NOTE**: To use dynamic batch-size (DeepStream >= 6.1) ``` --dynamic ``` **NOTE**: To use static batch-size (example for batch-size = 4) ``` --batch 4 ``` **NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 16. ``` --opset 12 ``` #### 5. Copy generated files Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder. ## ### Compile the lib 1. Open the `DeepStream-Yolo` folder and compile the lib 2. Set the `CUDA_VER` according to your DeepStream version ``` export CUDA_VER=XY.Z ``` * x86 platform ``` DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1 ``` * Jetson platform ``` DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2 ``` 3. Make the lib ``` make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_rtdetr file Edit the `config_infer_primary_rtdetr.txt` file according to your model (example for RT-DETR-R50 with 80 classes) ``` [property] ... onnx-file=rtdetr_r50vd_6x_coco.onnx ... num-detected-classes=80 ... parse-bbox-func-name=NvDsInferParseYolo ... ``` **NOTE**: The **RT-DETR** do not resize the input with padding. To get better accuracy, use ``` [property] ... maintain-aspect-ratio=0 ... ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_rtdetr.txt ``` ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes). **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.