import argparse import yaml import math import os import struct import torch from utils.torch_utils import select_device class YoloLayers(): def get_route(self, n, layers): route = 0 for i, layer in enumerate(layers): if i <= n: route += layer[1] else: break return route def route(self, layers=""): return "\n[route]\n" + \ "layers=%s\n" % layers def shortcut(self, route=-1, activation="linear"): return "\n[shortcut]\n" + \ "from=%d\n" % route + \ "activation=%s\n" % activation def maxpool(self, stride=1, size=1): return "\n[maxpool]\n" + \ "stride=%d\n" % stride + \ "size=%d\n" % size def upsample(self, stride=1): return "\n[upsample]\n" + \ "stride=%d\n" % stride def convolutional(self, bn=False, size=1, stride=1, pad=1, filters=1, groups=1, activation="linear"): b = "batch_normalize=1\n" if bn is True else "" g = "groups=%d\n" % groups if groups > 1 else "" return "\n[convolutional]\n" + \ b + \ "filters=%d\n" % filters + \ "size=%d\n" % size + \ "stride=%d\n" % stride + \ "pad=%d\n" % pad + \ g + \ "activation=%s\n" % activation def yolo(self, mask="", anchors="", classes=80, num=3): return "\n[yolo]\n" + \ "mask=%s\n" % mask + \ "anchors=%s\n" % anchors + \ "classes=%d\n" % classes + \ "num=%d\n" % num + \ "scale_x_y=2.0\n" + \ "beta_nms=0.6\n" + \ "new_coords=1\n" def parse_args(): parser = argparse.ArgumentParser(description="PyTorch YOLOv5 conversion") parser.add_argument("-w", "--weights", required=True, help="Input weights (.pt) file path (required)") parser.add_argument("-c", "--yaml", help="Input cfg (.yaml) file path") parser.add_argument("-mw", "--width", help="Model width (default = 640 / 1280 [P6])") parser.add_argument("-mh", "--height", help="Model height (default = 640 / 1280 [P6])") parser.add_argument("-mc", "--channels", help="Model channels (default = 3)") parser.add_argument("--p6", action="store_true", help="P6 model") args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit("Invalid weights file") if not args.yaml: args.yaml = "" if not args.width: args.width = 1280 if args.p6 else 640 if not args.height: args.height = 1280 if args.p6 else 640 if not args.channels: args.channels = 3 return args.weights, args.yaml, args.width, args.height, args.channels, args.p6 def get_width(x, gw, divisor=8): return int(math.ceil((x * gw) / divisor)) * divisor def get_depth(x, gd): if x == 1: return 1 r = int(round(x * gd)) if x * gd - int(x * gd) == 0.5 and int(x * gd) % 2 == 0: r -= 1 return max(r, 1) pt_file, yaml_file, model_width, model_height, model_channels, p6 = parse_args() model_name = pt_file.split(".pt")[0] wts_file = model_name + ".wts" if "yolov5" in model_name else "yolov5_" + model_name + ".wts" cfg_file = model_name + ".cfg" if "yolov5" in model_name else "yolov5_" + model_name + ".cfg" if yaml_file == "": yaml_file = "models/" + model_name + ".yaml" if not os.path.isfile(yaml_file): yaml_file = "models/hub/" + model_name + ".yaml" if not os.path.isfile(yaml_file): raise SystemExit("YAML file not found") elif not os.path.isfile(yaml_file): raise SystemExit("Invalid YAML file") device = select_device("cpu") model = torch.load(pt_file, map_location=device)["model"].float() anchor_grid = model.model[-1].anchors * model.model[-1].stride[..., None, None] delattr(model.model[-1], "anchor_grid") model.model[-1].register_buffer("anchor_grid", anchor_grid) model.to(device).eval() anchors = "" masks = [] with open(wts_file, "w") as f: wts_write = "" conv_count = 0 cv1 = "" cv3 = "" cv3_idx = 0 sppf_idx = 11 if p6 else 9 for k, v in model.state_dict().items(): if "num_batches_tracked" not in k and "anchors" not in k and "anchor_grid" not in k: vr = v.reshape(-1).cpu().numpy() idx = int(k.split(".")[1]) if ".cv1." in k and ".m." not in k and idx != sppf_idx: cv1 += "{} {} ".format(k, len(vr)) for vv in vr: cv1 += " " cv1 += struct.pack(">f", float(vv)).hex() cv1 += "\n" conv_count += 1 elif cv1 != "" and ".m." in k: wts_write += cv1 cv1 = "" if ".cv3." in k: cv3 += "{} {} ".format(k, len(vr)) for vv in vr: cv3 += " " cv3 += struct.pack(">f", float(vv)).hex() cv3 += "\n" cv3_idx = idx conv_count += 1 elif cv3 != "" and cv3_idx != idx: wts_write += cv3 cv3 = "" cv3_idx = 0 if ".cv3." not in k and not (".cv1." in k and ".m." not in k and idx != sppf_idx): wts_write += "{} {} ".format(k, len(vr)) for vv in vr: wts_write += " " wts_write += struct.pack(">f", float(vv)).hex() wts_write += "\n" conv_count += 1 elif "anchor_grid" in k: vr = v.cpu().numpy().tolist() a = v.reshape(-1).cpu().numpy().astype(float).tolist() anchors = str(a)[1:-1] num = 0 for m in vr: mask = [] for _ in range(len(m)): mask.append(num) num += 1 masks.append(mask) f.write("{}\n".format(conv_count)) f.write(wts_write) with open(cfg_file, "w") as c: with open(yaml_file, "r", encoding="utf-8") as f: c.write("[net]\n") c.write("width=%d\n" % model_width) c.write("height=%d\n" % model_height) c.write("channels=%d\n" % model_channels) nc = 0 depth_multiple = 0 width_multiple = 0 layers = [] yoloLayers = YoloLayers() f = yaml.load(f, Loader=yaml.FullLoader) for topic in f: if topic == "nc": nc = f[topic] elif topic == "depth_multiple": depth_multiple = f[topic] elif topic == "width_multiple": width_multiple = f[topic] elif topic == "backbone" or topic == "head": for v in f[topic]: if v[2] == "Conv": layer = "\n# Conv\n" blocks = 0 layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), size=v[3][1], stride=v[3][2], activation="silu") blocks += 1 layers.append([layer, blocks]) elif v[2] == "C3": layer = "\n# C3\n" blocks = 0 # SPLIT layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, activation="silu") blocks += 1 layer += yoloLayers.route(layers="-2") blocks += 1 layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, activation="silu") blocks += 1 # Residual Block if len(v[3]) == 1 or v[3][1] is True: for _ in range(get_depth(v[1], depth_multiple)): layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, activation="silu") blocks += 1 layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, size=3, activation="silu") blocks += 1 layer += yoloLayers.shortcut(route=-3) blocks += 1 # Merge layer += yoloLayers.route(layers="-1, -%d" % (3 * get_depth(v[1], depth_multiple) + 3)) blocks += 1 else: for _ in range(get_depth(v[1], depth_multiple)): layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, activation="silu") blocks += 1 layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, size=3, activation="silu") blocks += 1 # Merge layer += yoloLayers.route(layers="-1, -%d" % (2 * get_depth(v[1], depth_multiple) + 3)) blocks += 1 # Transition layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), activation="silu") blocks += 1 layers.append([layer, blocks]) elif v[2] == "SPPF": layer = "\n# SPPF\n" blocks = 0 layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2, activation="silu") blocks += 1 layer += yoloLayers.maxpool(size=v[3][1]) blocks += 1 layer += yoloLayers.maxpool(size=v[3][1]) blocks += 1 layer += yoloLayers.maxpool(size=v[3][1]) blocks += 1 layer += yoloLayers.route(layers="-4, -3, -2, -1") blocks += 1 layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), activation="silu") blocks += 1 layers.append([layer, blocks]) elif v[2] == "nn.Upsample": layer = "\n# nn.Upsample\n" blocks = 0 layer += yoloLayers.upsample(stride=v[3][1]) blocks += 1 layers.append([layer, blocks]) elif v[2] == "Concat": route = v[0][1] route = yoloLayers.get_route(route, layers) if route > 0 else \ yoloLayers.get_route(len(layers) + route, layers) layer = "\n# Concat\n" blocks = 0 layer += yoloLayers.route(layers="-1, %d" % (route - 1)) blocks += 1 layers.append([layer, blocks]) elif v[2] == "Detect": for i, n in enumerate(v[0]): route = yoloLayers.get_route(n, layers) layer = "\n# Detect\n" blocks = 0 layer += yoloLayers.route(layers="%d" % (route - 1)) blocks += 1 layer += yoloLayers.convolutional(filters=((nc + 5) * len(masks[i])), activation="logistic") blocks += 1 layer += yoloLayers.yolo(mask=str(masks[i])[1:-1], anchors=anchors, classes=nc, num=num) blocks += 1 layers.append([layer, blocks]) for layer in layers: c.write(layer[0])