/* * Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. * * NVIDIA Corporation and its licensors retain all intellectual property * and proprietary rights in and to this software, related documentation * and any modifications thereto. Any use, reproduction, disclosure or * distribution of this software and related documentation without an express * license agreement from NVIDIA Corporation is strictly prohibited. * * Edited by Marcos Luciano * https://www.github.com/marcoslucianops * */ #include #include #include #include #include inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); } __global__ void gpuYoloLayer(const float* input, float* output, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float scale_x_y) { uint x_id = blockIdx.x * blockDim.x + threadIdx.x; uint y_id = blockIdx.y * blockDim.y + threadIdx.y; uint z_id = blockIdx.z * blockDim.z + threadIdx.z; if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes)) { return; } const int numGridCells = gridSizeX * gridSizeY; const int bbindex = y_id * gridSizeX + x_id; const float alpha = scale_x_y; const float beta = -0.5 * (scale_x_y - 1); output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta; output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) * alpha + beta; output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]); output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]); output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)] = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]); for (uint i = 0; i < numOutputClasses; ++i) { output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]); } } cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float modelScale); cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float modelScale) { dim3 threads_per_block(16, 16, 4); dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1, (numBBoxes / threads_per_block.z) + 1); for (unsigned int batch = 0; batch < batchSize; ++batch) { gpuYoloLayer<<>>( reinterpret_cast(input) + (batch * outputSize), reinterpret_cast(output) + (batch * outputSize), gridSizeX, gridSizeY, numOutputClasses, numBBoxes, modelScale); } return cudaGetLastError(); }