# How to use custom models in DeepStream * [Requirements](#requirements) * [Editing files](#editing-files) * [Compile lib](#compile-lib) * [Understanding and editing deepstream_app_config](#understanding-and-editing-deepstream_app_config) * [Understanding and editing config_infer_primary](#understanding-and-editing-config_infer_primary) * [Testing model](#testing-model) ## ### Requirements * [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) * [Pre-treined YOLO model](https://github.com/AlexeyAB/darknet) ## ### Editing files #### 1. Download the repo ``` git clone https://github.com/marcoslucianops/DeepStream-Yolo.git cd DeepStream-Yolo ``` #### 2. Remane the obj.names file to labels.txt and copy it to DeepStream-Yolo directory #### 3. Copy the yolo.cfg and yolo.weights files to DeepStream-Yolo directory #### 4. Edit config_infer_primary.txt for your model ``` [property] ... # CFG custom-network-config=yolo.cfg # Weights model-file=yolo.weights # Model labels file labelfile-path=labels.txt ... ``` **NOTE**: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt file before run it ``` [primary-gie] enable=1 gpu-id=0 gie-unique-id=1 nvbuf-memory-type=0 config-file=config_infer_primary_yoloV2.txt ``` **NOTE**: The config_infer_primary.txt file uses cluster-mode=4 and NMS = 0.45 (via code) when beta_nms isn't available (when beta_nms is available, NMS = beta_nms), while the config_infer_primary_yoloV2.txt file uses cluster-mode=2 and nms-iou-threshold=0.45 to set NMS. ## ### Compile lib * x86 platform ``` CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo ``` * Jetson platform ``` CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo ``` ## ### Understanding and editing deepstream_app_config To understand and edit deepstream_app_config.txt file, read the [DeepStream Reference Application - Configuration Groups](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_ref_app_deepstream.html#configuration-groups) ## #### tiled-display ``` [tiled-display] enable=1 # If you have 1 stream use 1/1 (rows/columns), if you have 4 streams use 2/2 or 4/1 or 1/4 (rows/columns) rows=1 columns=1 # Resolution of tiled display width=1280 height=720 gpu-id=0 nvbuf-memory-type=0 ``` ## #### source * Example for 1 source: ``` [source0] enable=1 # 1=Camera (V4L2), 2=URI, 3=MultiURI, 4=RTSP, 5=Camera (CSI; Jetson only) type=3 # Stream URL uri=rtsp://192.168.1.2/Streaming/Channels/101/httppreview # Number of sources copy (if > 1, edit rows/columns in tiled-display section; use type=3 for more than 1 source) num-sources=1 gpu-id=0 cudadec-memtype=0 ``` * Example for 1 duplcated source: ``` [source0] enable=1 type=3 uri=rtsp://192.168.1.2/Streaming/Channels/101/ num-sources=2 gpu-id=0 cudadec-memtype=0 ``` * Example for 2 sources: ``` [source0] enable=1 type=3 uri=rtsp://192.168.1.2/Streaming/Channels/101/ num-sources=1 gpu-id=0 cudadec-memtype=0 [source1] enable=1 type=3 uri=rtsp://192.168.1.3/Streaming/Channels/101/ num-sources=1 gpu-id=0 cudadec-memtype=0 ``` ## #### sink ``` [sink0] enable=1 # 1=Fakesink, 2=EGL (nveglglessink), 3=Filesink, 4=RTSP, 5=Overlay (Jetson only) type=2 # Indicates how fast the stream is to be rendered (0=As fast as possible, 1=Synchronously) sync=0 gpu-id=0 nvbuf-memory-type=0 ``` ## #### streammux ``` [streammux] gpu-id=0 # Boolean property to inform muxer that sources are live live-source=1 batch-size=1 batched-push-timeout=40000 # Resolution of streammux width=1920 height=1080 enable-padding=0 nvbuf-memory-type=0 ``` ## #### primary-gie ``` [primary-gie] enable=1 gpu-id=0 gie-unique-id=1 nvbuf-memory-type=0 config-file=config_infer_primary.txt ``` ## ### Understanding and editing config_infer_primary To understand and edit config_infer_primary.txt file, read the [DeepStream Plugin Guide - Gst-nvinfer File Configuration Specifications](https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html#gst-nvinfer-file-configuration-specifications) ## #### model-color-format ``` # 0=RGB, 1=BGR, 2=GRAYSCALE model-color-format=0 ``` **NOTE**: Set it accoding to number of channels in yolo.cfg file (1=GRAYSCALE, 3=RGB) ## #### model-engine-file * Example for batch-size=1 and network-mode=2 ``` model-engine-file=model_b1_gpu0_fp16.engine ``` * Example for batch-size=1 and network-mode=0 ``` model-engine-file=model_b1_gpu0_fp32.engine ``` * Example for batch-size=2 and network-mode=0 ``` model-engine-file=model_b2_gpu0_fp32.engine ``` ## #### batch-size ``` batch-size=1 ``` ## #### network-mode ``` # 0=FP32, 1=INT8, 2=FP16 network-mode=0 ``` ## #### num-detected-classes ``` num-detected-classes=80 ``` **NOTE**: Set it according to number of classes in yolo.cfg file ## #### network-type ``` # 0=Detector, 1=Classifier, 2=Segmentation network-type=0 ``` ## #### interval ``` # Number of consecutive batches to be skipped interval=0 ``` ## #### pre-cluster-threshold ``` [class-attrs-all] # CONF_THRESH pre-cluster-threshold=0.25 ``` ## ### Testing model ``` deepstream-app -c deepstream_app_config.txt ```