import os import torch import torch.nn as nn from copy import deepcopy from ultralytics import RTDETR class DeepStreamOutput(nn.Module): def __init__(self, img_size): super().__init__() self.img_size = img_size def forward(self, x): boxes = x[:, :, :4] convert_matrix = torch.tensor( [[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device ) boxes @= convert_matrix boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1) scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True) return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1) def rtdetr_ultralytics_export(weights, device): model = RTDETR(weights) model = deepcopy(model.model).to(device) for p in model.parameters(): p.requires_grad = False model.eval() model.float() model = model.fuse() for k, m in model.named_modules(): if m.__class__.__name__ in ('Detect', 'RTDETRDecoder'): m.dynamic = False m.export = True m.format = 'onnx' elif m.__class__.__name__ == 'C2f': m.forward = m.forward_split return model def suppress_warnings(): import warnings warnings.filterwarnings('ignore', category=torch.jit.TracerWarning) warnings.filterwarnings('ignore', category=UserWarning) warnings.filterwarnings('ignore', category=DeprecationWarning) warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=ResourceWarning) def main(args): suppress_warnings() print(f'\nStarting: {args.weights}') print('Opening RT-DETR Ultralytics model') device = torch.device('cpu') model = rtdetr_ultralytics_export(args.weights, device) if len(model.names.keys()) > 0: print('Creating labels.txt file') with open('labels.txt', 'w', encoding='utf-8') as f: for name in model.names.values(): f.write(f'{name}\n') img_size = args.size * 2 if len(args.size) == 1 else args.size model = nn.Sequential(model, DeepStreamOutput(img_size)) onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device) onnx_output_file = f'{args.weights}.onnx' dynamic_axes = { 'input': { 0: 'batch' }, 'output': { 0: 'batch' } } print('Exporting the model to ONNX') torch.onnx.export( model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None ) if args.simplify: print('Simplifying is not available for this model') print(f'Done: {onnx_output_file}\n') def parse_args(): import argparse parser = argparse.ArgumentParser(description='DeepStream RT-DETR Ultralytics conversion') parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)') parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])') parser.add_argument('--opset', type=int, default=17, help='ONNX opset version') parser.add_argument('--simplify', action='store_true', help='ONNX simplify model') parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size') parser.add_argument('--batch', type=int, default=1, help='Static batch-size') args = parser.parse_args() if not os.path.isfile(args.weights): raise SystemExit('Invalid weights file') if args.dynamic and args.batch > 1: raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time') return args if __name__ == '__main__': args = parse_args() main(args)