/* * Created by Marcos Luciano * https://www.github.com/marcoslucianops */ #include inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); } __device__ void softmaxGPU(const float* input, const int bbindex, const int numGridCells, uint z_id, const uint numOutputClasses, float temp, float* output) { int i; float sum = 0; float largest = -INFINITY; for (i = 0; i < numOutputClasses; ++i) { int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]; largest = (val>largest) ? val : largest; } for (i = 0; i < numOutputClasses; ++i) { float e = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp); sum += e; output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e; } for (i = 0; i < numOutputClasses; ++i) { output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum; } } __global__ void gpuRegionLayer(const float* input, float* softmax, float* output, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const uint64_t lastInputSize, const float* anchors) { uint x_id = blockIdx.x * blockDim.x + threadIdx.x; uint y_id = blockIdx.y * blockDim.y + threadIdx.y; uint z_id = blockIdx.z * blockDim.z + threadIdx.z; if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes) { return; } const int numGridCells = gridSizeX * gridSizeY; const int bbindex = y_id * gridSizeX + x_id; float xc = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) + x_id) * netWidth / gridSizeX; float yc = (sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) + y_id) * netHeight / gridSizeY; float w = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * anchors[z_id * 2] * netWidth / gridSizeX; float h = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * anchors[z_id * 2 + 1] * netHeight / gridSizeY; const float objectness = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]); softmaxGPU(input, bbindex, numGridCells, z_id, numOutputClasses, 1.0, softmax); float maxProb = 0.0f; int maxIndex = -1; for (uint i = 0; i < numOutputClasses; ++i) { float prob = softmax[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]; if (prob > maxProb) { maxProb = prob; maxIndex = i; } } int count = numGridCells * z_id + bbindex + lastInputSize; output[count * 6 + 0] = xc - w * 0.5; output[count * 6 + 1] = yc - h * 0.5; output[count * 6 + 2] = xc + w * 0.5; output[count * 6 + 3] = yc + h * 0.5; output[count * 6 + 4] = maxProb * objectness; output[count * 6 + 5] = (float) maxIndex; } cudaError_t cudaRegionLayer(const void* input, void* softmax, void* output, const uint& batchSize, const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream); cudaError_t cudaRegionLayer(const void* input, void* softmax, void* output, const uint& batchSize, const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream) { dim3 threads_per_block(16, 16, 4); dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1, (numBBoxes / threads_per_block.z) + 1); for (unsigned int batch = 0; batch < batchSize; ++batch) { gpuRegionLayer<<>>( reinterpret_cast (input) + (batch * inputSize), reinterpret_cast (softmax) + (batch * inputSize), reinterpret_cast (output) + (batch * 6 * outputSize), netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, lastInputSize, reinterpret_cast (anchors)); } return cudaGetLastError(); }