# RTMDet (MMYOLO) usage * [Convert model](#convert-model) * [Compile the lib](#compile-the-lib) * [Edit the config_infer_primary_rtmdet file](#edit-the-config_infer_primary_rtmdet-file) * [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file) * [Testing the model](#testing-the-model) ## ### Convert model #### 1. Download the RTMDet (MMYOLO) repo and install the requirements ``` git clone https://github.com/open-mmlab/mmyolo.git cd mmyolo pip3 install openmim mim install "mmengine>=0.6.0" mim install "mmcv>=2.0.0rc4,<2.1.0" mim install "mmdet>=3.0.0,<4.0.0" pip3 install -r requirements/albu.txt mim install -v -e . pip3 install onnx onnxslim onnxruntime ``` **NOTE**: It is recommended to use Python virtualenv. #### 2. Copy conversor Copy the `export_rtmdet.py` file from `DeepStream-Yolo/utils` directory to the `mmyolo` folder. #### 3. Download the model Download the `pth` file from [RTMDet (MMYOLO)](https://github.com/open-mmlab/mmyolo/tree/main/configs/rtmdet) releases (example for RTMDet-s*) ``` wget https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_s_rtmdet_m_neck_300e_coco/kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth ``` **NOTE**: You can use your custom model. #### 4. Convert model Generate the ONNX model file (example for RTMDet-s*) ``` python3 export_rtmdet.py -w kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth -c configs/rtmdet/distillation/kd_s_rtmdet_m_neck_300e_coco.py --dynamic ``` **NOTE**: To change the inference size (defaut: 640) ``` -s SIZE --size SIZE -s HEIGHT WIDTH --size HEIGHT WIDTH ``` Example for 1280 ``` -s 1280 ``` or ``` -s 1280 1280 ``` **NOTE**: To simplify the ONNX model (DeepStream >= 6.0) ``` --simplify ``` **NOTE**: To use dynamic batch-size (DeepStream >= 6.1) ``` --dynamic ``` **NOTE**: To use static batch-size (example for batch-size = 4) ``` --batch 4 ``` **NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 17. ``` --opset 12 ``` #### 5. Copy generated files Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder. ## ### Compile the lib 1. Open the `DeepStream-Yolo` folder and compile the lib 2. Set the `CUDA_VER` according to your DeepStream version ``` export CUDA_VER=XY.Z ``` * x86 platform ``` DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1 ``` * Jetson platform ``` DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2 ``` 3. Make the lib ``` make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo ``` ## ### Edit the config_infer_primary_rtmdet file Edit the `config_infer_primary_rtmdet.txt` file according to your model (example for RTMDet-s* with 80 classes) ``` [property] ... onnx-file=kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth.onnx ... num-detected-classes=80 ... parse-bbox-func-name=NvDsInferParseYolo ... ``` **NOTE**: The **RTMDet (MMYOLO)** resizes the input with center padding. To get better accuracy, use ``` [property] ... maintain-aspect-ratio=1 symmetric-padding=1 ... ``` **NOTE**: The **RTMDet (MMYOLO)** uses BGR color format for the image input. It is important to change the `model-color-format` according to the trained values. ``` [property] ... model-color-format=1 ... ``` **NOTE**: The **RTMDet (MMYOLO)** uses normalization on the image preprocess. It is important to change the `net-scale-factor` and `offsets` according to the trained values. Default: `mean = 0.485, 0.456, 0.406` and `std = 0.229, 0.224, 0.225` ``` [property] ... net-scale-factor=0.0173520735727919486 offsets=103.53;116.28;123.675 ... ``` ## ### Edit the deepstream_app_config file ``` ... [primary-gie] ... config-file=config_infer_primary_rtmdet.txt ``` ## ### Testing the model ``` deepstream-app -c deepstream_app_config.txt ``` **NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes). **NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.