Add YOLOv8 support

This commit is contained in:
Marcos Luciano
2023-01-27 15:56:00 -03:00
parent f1cd701247
commit f9c7a4dfca
59 changed files with 3260 additions and 2763 deletions

View File

@@ -5,98 +5,82 @@
#include <stdint.h>
__global__ void gpuYoloLayer_nc(
const float* input, int* num_detections, float* detection_boxes, float* detection_scores, int* detection_classes,
const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY,
const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors, const int* mask)
__global__ void gpuYoloLayer_nc(const float* input, int* num_detections, float* detection_boxes, float* detection_scores,
int* detection_classes, const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX,
const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors,
const int* mask)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
const float objectness
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
const float objectness = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
if (objectness < scoreThreshold)
return;
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(num_detections, 1);
int count = (int)atomicAdd(num_detections, 1);
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);
const float alpha = scaleXY;
const float beta = -0.5 * (scaleXY - 1);
float x
= (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
* alpha + beta + x_id) * netWidth / gridSizeX;
float x = (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta + x_id) * netWidth /
gridSizeX;
float y
= (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
* alpha + beta + y_id) * netHeight / gridSizeY;
float y = (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta + y_id) * netHeight /
gridSizeY;
float w
= __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2)
* anchors[mask[z_id] * 2];
float w = __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2) * anchors[mask[z_id] * 2];
float h
= __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2)
* anchors[mask[z_id] * 2 + 1];
float h = __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2) * anchors[mask[z_id] * 2 + 1];
float maxProb = 0.0f;
int maxIndex = -1;
float maxProb = 0.0f;
int maxIndex = -1;
for (uint i = 0; i < numOutputClasses; ++i)
{
float prob
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
if (prob > maxProb)
{
maxProb = prob;
maxIndex = i;
}
for (uint i = 0; i < numOutputClasses; ++i) {
float prob = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
if (prob > maxProb) {
maxProb = prob;
maxIndex = i;
}
}
detection_boxes[count * 4 + 0] = x - 0.5 * w;
detection_boxes[count * 4 + 1] = y - 0.5 * h;
detection_boxes[count * 4 + 2] = x + 0.5 * w;
detection_boxes[count * 4 + 3] = y + 0.5 * h;
detection_scores[count] = objectness * maxProb;
detection_classes[count] = maxIndex;
detection_boxes[count * 4 + 0] = x - 0.5 * w;
detection_boxes[count * 4 + 1] = y - 0.5 * h;
detection_boxes[count * 4 + 2] = x + 0.5 * w;
detection_boxes[count * 4 + 3] = y + 0.5 * h;
detection_scores[count] = objectness * maxProb;
detection_classes[count] = maxIndex;
}
cudaError_t cudaYoloLayer_nc(
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_nc(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_nc(
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
cudaError_t cudaYoloLayer_nc(const void* input, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
{
dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
(gridSizeY / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1);
dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1, (gridSizeY / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1);
for (unsigned int batch = 0; batch < batchSize; ++batch)
{
gpuYoloLayer_nc<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(input) + (batch * inputSize),
reinterpret_cast<int*>(num_detections) + (batch),
reinterpret_cast<float*>(detection_boxes) + (batch * 4 * outputSize),
reinterpret_cast<float*>(detection_scores) + (batch * outputSize),
reinterpret_cast<int*>(detection_classes) + (batch * outputSize),
scoreThreshold, netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, scaleXY,
reinterpret_cast<const float*>(anchors), reinterpret_cast<const int*>(mask));
}
return cudaGetLastError();
for (unsigned int batch = 0; batch < batchSize; ++batch) {
gpuYoloLayer_nc<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(input) + (batch * inputSize), reinterpret_cast<int*>(num_detections) + (batch),
reinterpret_cast<float*>(detection_boxes) + (batch * 4 * outputSize),
reinterpret_cast<float*>(detection_scores) + (batch * outputSize),
reinterpret_cast<int*>(detection_classes) + (batch * outputSize), scoreThreshold, netWidth, netHeight, gridSizeX,
gridSizeY, numOutputClasses, numBBoxes, scaleXY, reinterpret_cast<const float*>(anchors),
reinterpret_cast<const int*>(mask));
}
return cudaGetLastError();
}