Add YOLOv8 support

This commit is contained in:
Marcos Luciano
2023-01-27 15:56:00 -03:00
parent f1cd701247
commit f9c7a4dfca
59 changed files with 3260 additions and 2763 deletions

View File

@@ -23,118 +23,103 @@
* https://www.github.com/marcoslucianops
*/
#include <algorithm>
#include <cmath>
#include <sstream>
#include "nvdsinfer_custom_impl.h"
#include "utils.h"
#include "utils.h"
#include "yoloPlugins.h"
extern "C" bool NvDsInferParseYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
extern "C" bool
NvDsInferParseYolo(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
static NvDsInferParseObjectInfo convertBBox(
const float& bx1, const float& by1, const float& bx2, const float& by2, const uint& netW, const uint& netH)
static NvDsInferParseObjectInfo
convertBBox(const float& bx1, const float& by1, const float& bx2, const float& by2, const uint& netW, const uint& netH)
{
NvDsInferParseObjectInfo b;
NvDsInferParseObjectInfo b;
float x1 = bx1;
float y1 = by1;
float x2 = bx2;
float y2 = by2;
float x1 = bx1;
float y1 = by1;
float x2 = bx2;
float y2 = by2;
x1 = clamp(x1, 0, netW);
y1 = clamp(y1, 0, netH);
x2 = clamp(x2, 0, netW);
y2 = clamp(y2, 0, netH);
x1 = clamp(x1, 0, netW);
y1 = clamp(y1, 0, netH);
x2 = clamp(x2, 0, netW);
y2 = clamp(y2, 0, netH);
b.left = x1;
b.width = clamp(x2 - x1, 0, netW);
b.top = y1;
b.height = clamp(y2 - y1, 0, netH);
b.left = x1;
b.width = clamp(x2 - x1, 0, netW);
b.top = y1;
b.height = clamp(y2 - y1, 0, netH);
return b;
return b;
}
static void addBBoxProposal(
const float bx1, const float by1, const float bx2, const float by2, const uint& netW, const uint& netH,
static void
addBBoxProposal(const float bx1, const float by1, const float bx2, const float by2, const uint& netW, const uint& netH,
const int maxIndex, const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
{
NvDsInferParseObjectInfo bbi = convertBBox(bx1, by1, bx2, by2, netW, netH);
if (bbi.width < 1 || bbi.height < 1) return;
NvDsInferParseObjectInfo bbi = convertBBox(bx1, by1, bx2, by2, netW, netH);
if (bbi.width < 1 || bbi.height < 1) return;
bbi.detectionConfidence = maxProb;
bbi.classId = maxIndex;
binfo.push_back(bbi);
bbi.detectionConfidence = maxProb;
bbi.classId = maxIndex;
binfo.push_back(bbi);
}
static std::vector<NvDsInferParseObjectInfo> decodeYoloTensor(
const int* counts, const float* boxes, const float* scores, const int* classes, const uint& netW, const uint& netH)
static std::vector<NvDsInferParseObjectInfo>
decodeYoloTensor(const int* counts, const float* boxes, const float* scores, const int* classes, const uint& netW,
const uint& netH)
{
std::vector<NvDsInferParseObjectInfo> binfo;
std::vector<NvDsInferParseObjectInfo> binfo;
uint numBoxes = counts[0];
for (uint b = 0; b < numBoxes; ++b)
{
float bx1 = boxes[b * 4 + 0];
float by1 = boxes[b * 4 + 1];
float bx2 = boxes[b * 4 + 2];
float by2 = boxes[b * 4 + 3];
uint numBoxes = counts[0];
for (uint b = 0; b < numBoxes; ++b) {
float bx1 = boxes[b * 4 + 0];
float by1 = boxes[b * 4 + 1];
float bx2 = boxes[b * 4 + 2];
float by2 = boxes[b * 4 + 3];
float maxProb = scores[b];
int maxIndex = classes[b];
float maxProb = scores[b];
int maxIndex = classes[b];
addBBoxProposal(bx1, by1, bx2, by2, netW, netH, maxIndex, maxProb, binfo);
}
return binfo;
addBBoxProposal(bx1, by1, bx2, by2, netW, netH, maxIndex, maxProb, binfo);
}
return binfo;
}
static bool NvDsInferParseCustomYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList,
const uint &numClasses)
{
if (outputLayersInfo.empty())
{
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
return false;
}
if (numClasses != detectionParams.numClassesConfigured)
{
std::cerr << "WARNING: Num classes mismatch. Configured: " << detectionParams.numClassesConfigured
<< ", detected by network: " << numClasses << std::endl;
}
std::vector<NvDsInferParseObjectInfo> objects;
const NvDsInferLayerInfo &counts = outputLayersInfo[0];
const NvDsInferLayerInfo &boxes = outputLayersInfo[1];
const NvDsInferLayerInfo &scores = outputLayersInfo[2];
const NvDsInferLayerInfo &classes = outputLayersInfo[3];
std::vector<NvDsInferParseObjectInfo> outObjs =
decodeYoloTensor(
(const int*)(counts.buffer), (const float*)(boxes.buffer), (const float*)(scores.buffer),
(const int*)(classes.buffer), networkInfo.width, networkInfo.height);
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
objectList = objects;
return true;
}
extern "C" bool NvDsInferParseYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
static bool
NvDsInferParseCustomYolo(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
int num_classes = kNUM_CLASSES;
if (outputLayersInfo.empty()) {
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
return false;
}
return NvDsInferParseCustomYolo (
outputLayersInfo, networkInfo, detectionParams, objectList, num_classes);
std::vector<NvDsInferParseObjectInfo> objects;
const NvDsInferLayerInfo& counts = outputLayersInfo[0];
const NvDsInferLayerInfo& boxes = outputLayersInfo[1];
const NvDsInferLayerInfo& scores = outputLayersInfo[2];
const NvDsInferLayerInfo& classes = outputLayersInfo[3];
std::vector<NvDsInferParseObjectInfo> outObjs = decodeYoloTensor((const int*) (counts.buffer),
(const float*) (boxes.buffer), (const float*) (scores.buffer), (const int*) (classes.buffer), networkInfo.width,
networkInfo.height);
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
objectList = objects;
return true;
}
extern "C" bool
NvDsInferParseYolo(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
return NvDsInferParseCustomYolo(outputLayersInfo, networkInfo, detectionParams, objectList);
}
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo);