Add DAMO-YOLO + Fixes
This commit is contained in:
158
docs/DAMOYOLO.md
Normal file
158
docs/DAMOYOLO.md
Normal file
@@ -0,0 +1,158 @@
|
||||
# DAMO-YOLO usage
|
||||
|
||||
* [Convert model](#convert-model)
|
||||
* [Compile the lib](#compile-the-lib)
|
||||
* [Edit the config_infer_primary_damoyolo file](#edit-the-config_infer_primary_damoyolo-file)
|
||||
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
||||
* [Testing the model](#testing-the-model)
|
||||
|
||||
##
|
||||
|
||||
### Convert model
|
||||
|
||||
#### 1. Download the DAMO-YOLO repo and install the requirements
|
||||
|
||||
```
|
||||
git clone https://github.com/tinyvision/DAMO-YOLO.git
|
||||
cd DAMO-YOLO
|
||||
pip3 install -r requirements.txt
|
||||
pip3 install onnx onnxsim onnxruntime
|
||||
```
|
||||
|
||||
**NOTE**: It is recommended to use Python virtualenv.
|
||||
|
||||
#### 2. Copy conversor
|
||||
|
||||
Copy the `export_damoyolo.py` file from `DeepStream-Yolo/utils` directory to the `DAMO-YOLO` folder.
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
Download the `pth` file from [DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO) releases (example for DAMO-YOLO-S*)
|
||||
|
||||
```
|
||||
wget https://idstcv.oss-cn-zhangjiakou.aliyuncs.com/DAMO-YOLO/release_model/clean_model_0317/damoyolo_tinynasL25_S_477.pth
|
||||
```
|
||||
|
||||
**NOTE**: You can use your custom model.
|
||||
|
||||
#### 4. Convert model
|
||||
|
||||
Generate the ONNX model file (example for DAMO-YOLO-S*)
|
||||
|
||||
```
|
||||
python3 export_damoyolo.py -w damoyolo_tinynasL25_S_477.pth -c configs/damoyolo_tinynasL25_S.py --simplify
|
||||
```
|
||||
|
||||
**NOTE**: To change the inference size (defaut: 640)
|
||||
|
||||
```
|
||||
-s SIZE
|
||||
--size SIZE
|
||||
-s HEIGHT WIDTH
|
||||
--size HEIGHT WIDTH
|
||||
```
|
||||
|
||||
Example for 1280
|
||||
|
||||
```
|
||||
-s 1280
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
-s 1280 1280
|
||||
```
|
||||
|
||||
#### 5. Copy generated files
|
||||
|
||||
Copy the generated ONNX model file to the `DeepStream-Yolo` folder.
|
||||
|
||||
##
|
||||
|
||||
### Compile the lib
|
||||
|
||||
Open the `DeepStream-Yolo` folder and compile the lib
|
||||
|
||||
* DeepStream 6.2 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.1.1 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.1 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.2 / 6.1.1 / 6.1 on Jetson platform
|
||||
|
||||
```
|
||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||
|
||||
```
|
||||
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
### Edit the config_infer_primary_damoyolo file
|
||||
|
||||
Edit the `config_infer_primary_damoyolo.txt` file according to your model (example for DAMO-YOLO-S* with 80 classes)
|
||||
|
||||
```
|
||||
[property]
|
||||
...
|
||||
onnx-file=damoyolo_tinynasL25_S.onnx
|
||||
model-engine-file=damoyolo_tinynasL25_S.onnx_b1_gpu0_fp32.engine
|
||||
...
|
||||
num-detected-classes=80
|
||||
...
|
||||
parse-bbox-func-name=NvDsInferParseYoloE
|
||||
...
|
||||
```
|
||||
|
||||
**NOTE**: The **DAMO-YOLO** do not resize the input with padding. To get better accuracy, use
|
||||
|
||||
```
|
||||
maintain-aspect-ratio=0
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
### Edit the deepstream_app_config file
|
||||
|
||||
```
|
||||
...
|
||||
[primary-gie]
|
||||
...
|
||||
config-file=config_infer_primary_damoyolo.txt
|
||||
```
|
||||
|
||||
##
|
||||
|
||||
### Testing the model
|
||||
|
||||
```
|
||||
deepstream-app -c deepstream_app_config.txt
|
||||
```
|
||||
|
||||
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
||||
|
||||
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|
||||
@@ -30,7 +30,7 @@ Copy the `export_yolonas.py` file from `DeepStream-Yolo/utils` directory to the
|
||||
|
||||
#### 3. Download the model
|
||||
|
||||
Download the `pth` file from [YOLO-NAS](https://sghub.deci.ai/) website (example for YOLO-NAS S)
|
||||
Download the `pth` file from [YOLO-NAS](https://sghub.deci.ai/) releases (example for YOLO-NAS S)
|
||||
|
||||
```
|
||||
wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth
|
||||
|
||||
@@ -2,8 +2,6 @@
|
||||
|
||||
**NOTE**: You can use the main branch of the YOLOX repo to convert all model versions.
|
||||
|
||||
**NOTE**: The yaml file is not required.
|
||||
|
||||
* [Convert model](#convert-model)
|
||||
* [Compile the lib](#compile-the-lib)
|
||||
* [Edit the config_infer_primary_yolox file](#edit-the-config_infer_primary_yolox-file)
|
||||
|
||||
Reference in New Issue
Block a user