GPU Batched NMS

This commit is contained in:
Marcos Luciano
2022-06-19 12:12:04 -03:00
parent f621c0f429
commit f80aa10cf2
6 changed files with 47 additions and 56 deletions

View File

@@ -32,14 +32,11 @@
#include "yoloPlugins.h"
extern "C" bool NvDsInferParseYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList);
std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
static NvDsInferParseObjectInfo convertBBox(
const float& bx1, const float& by1, const float& bx2,
const float& by2, const uint& netW, const uint& netH)
const float& bx1, const float& by1, const float& bx2, const float& by2, const uint& netW, const uint& netH)
{
NvDsInferParseObjectInfo b;
@@ -62,9 +59,8 @@ static NvDsInferParseObjectInfo convertBBox(
}
static void addBBoxProposal(
const float bx1, const float by1, const float bx2, const float by2,
const uint& netW, const uint& netH, const int maxIndex,
const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
const float bx1, const float by1, const float bx2, const float by2, const uint& netW, const uint& netH,
const int maxIndex, const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
{
NvDsInferParseObjectInfo bbi = convertBBox(bx1, by1, bx2, by2, netW, netH);
if (bbi.width < 1 || bbi.height < 1) return;
@@ -75,14 +71,11 @@ static void addBBoxProposal(
}
static std::vector<NvDsInferParseObjectInfo> decodeYoloTensor(
const int* counts, const float* boxes,
const float* scores, const float* classes,
const uint& netW, const uint& netH)
const int* counts, const float* boxes, const float* scores, const float* classes, const uint& netW, const uint& netH)
{
std::vector<NvDsInferParseObjectInfo> binfo;
uint numBoxes = counts[0];
for (uint b = 0; b < numBoxes; ++b)
{
float bx1 = boxes[b * 4 + 0];
@@ -99,10 +92,8 @@ static std::vector<NvDsInferParseObjectInfo> decodeYoloTensor(
}
static bool NvDsInferParseCustomYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList,
std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList,
const uint &numClasses)
{
if (outputLayersInfo.empty())
@@ -113,28 +104,23 @@ static bool NvDsInferParseCustomYolo(
if (numClasses != detectionParams.numClassesConfigured)
{
std::cerr << "WARNING: Num classes mismatch. Configured: "
<< detectionParams.numClassesConfigured
std::cerr << "WARNING: Num classes mismatch. Configured: " << detectionParams.numClassesConfigured
<< ", detected by network: " << numClasses << std::endl;
}
std::vector<NvDsInferParseObjectInfo> objects;
for (uint idx = 0; idx < outputLayersInfo.size() / 4; ++idx)
{
const NvDsInferLayerInfo &counts = outputLayersInfo[idx * 4 + 0];
const NvDsInferLayerInfo &boxes = outputLayersInfo[idx * 4 + 1];
const NvDsInferLayerInfo &scores = outputLayersInfo[idx * 4 + 2];
const NvDsInferLayerInfo &classes = outputLayersInfo[idx * 4 + 3];
const NvDsInferLayerInfo &counts = outputLayersInfo[0];
const NvDsInferLayerInfo &boxes = outputLayersInfo[1];
const NvDsInferLayerInfo &scores = outputLayersInfo[2];
const NvDsInferLayerInfo &classes = outputLayersInfo[3];
std::vector<NvDsInferParseObjectInfo> outObjs =
decodeYoloTensor(
(const int*)(counts.buffer), (const float*)(boxes.buffer),
(const float*)(scores.buffer), (const float*)(classes.buffer),
networkInfo.width, networkInfo.height);
(const int*)(counts.buffer), (const float*)(boxes.buffer), (const float*)(scores.buffer),
(const float*)(classes.buffer), networkInfo.width, networkInfo.height);
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
}
objectList = objects;
@@ -142,10 +128,8 @@ static bool NvDsInferParseCustomYolo(
}
extern "C" bool NvDsInferParseYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
int num_classes = kNUM_CLASSES;

View File

@@ -7,10 +7,13 @@
__global__ void sortOutput(
int* d_indexes, float* d_scores, float* d_boxes, int* d_classes, float* bboxData, float* scoreData,
const uint numOutputClasses)
const uint numOutputClasses, const int topk)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
if (x_id >= topk)
return;
int index = d_indexes[x_id];
int maxIndex = d_classes[index];
bboxData[x_id * 4 + 0] = d_boxes[index * 4 + 0];
@@ -67,12 +70,20 @@ cudaError_t sortDetections(
cudaMemcpy(_d_scores, d_keys_out, count * sizeof(float), cudaMemcpyDeviceToDevice);
cudaMemcpy(_d_indexes, d_values_out, count * sizeof(int), cudaMemcpyDeviceToDevice);
int threads_per_block = count < topK ? count : topK;
int _topK = count < topK ? count : topK;
sortOutput<<<1, threads_per_block, 0, stream>>>(
int threads_per_block = 0;
int number_of_blocks = 4;
if (_topK % 2 == 0)
threads_per_block = _topK / number_of_blocks;
else
threads_per_block = (_topK / number_of_blocks) + 1;
sortOutput<<<number_of_blocks, threads_per_block, 0, stream>>>(
_d_indexes, _d_scores, reinterpret_cast<float*>(d_boxes) + (batch * 4 * outputSize),
reinterpret_cast<int*>(d_classes) + (batch * outputSize), reinterpret_cast<float*>(bboxData) + (batch * topK),
reinterpret_cast<float*>(scoreData) + (batch * topK), numOutputClasses);
reinterpret_cast<float*>(scoreData) + (batch * topK), numOutputClasses, _topK);
cudaFree(d_keys_out);
cudaFree(d_values_out);

View File

@@ -16,10 +16,8 @@ __global__ void gpuYoloLayer(
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes))
{
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
}
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
@@ -27,7 +25,8 @@ __global__ void gpuYoloLayer(
const float objectness
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
if (objectness < scoreThreshold) return;
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);

View File

@@ -14,10 +14,8 @@ __global__ void gpuYoloLayer_nc(
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes))
{
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
}
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
@@ -25,7 +23,8 @@ __global__ void gpuYoloLayer_nc(
const float objectness
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
if (objectness < scoreThreshold) return;
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);

View File

@@ -16,10 +16,8 @@ __global__ void gpuYoloLayer_r(
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes))
{
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
}
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
@@ -27,7 +25,8 @@ __global__ void gpuYoloLayer_r(
const float objectness
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
if (objectness < scoreThreshold) return;
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);

View File

@@ -37,10 +37,8 @@ __global__ void gpuRegionLayer(
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if ((x_id >= gridSizeX) || (y_id >= gridSizeY) || (z_id >= numBBoxes))
{
if (x_id >= gridSizeX || y_id >= gridSizeY || z_id >= numBBoxes)
return;
}
const int numGridCells = gridSizeX * gridSizeY;
const int bbindex = y_id * gridSizeX + x_id;
@@ -48,7 +46,8 @@ __global__ void gpuRegionLayer(
const float objectness
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
if (objectness < scoreThreshold) return;
if (objectness < scoreThreshold)
return;
int count = (int)atomicAdd(&countData[0], 1);