GPU Batched NMS
This commit is contained in:
@@ -29,7 +29,6 @@
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
|
||||
uint kNUM_BBOXES;
|
||||
uint kNUM_CLASSES;
|
||||
|
||||
namespace {
|
||||
@@ -49,131 +48,108 @@ namespace {
|
||||
}
|
||||
|
||||
cudaError_t cudaYoloLayer_r(
|
||||
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
|
||||
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(
|
||||
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
|
||||
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer(
|
||||
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
|
||||
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaRegionLayer(
|
||||
const void* input, void* output, void* softmax, const uint& batchSize, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
||||
const uint& numBBoxes, uint64_t& outputSize, const void* anchors, cudaStream_t stream);
|
||||
const void* input, void* softmax, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const void* anchors, cudaStream_t stream);
|
||||
|
||||
cudaError_t sortDetections(
|
||||
void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* bboxData, void* scoreData, void* countData,
|
||||
const uint& batchSize, uint64_t& outputSize, uint& topK, const uint& numOutputClasses, cudaStream_t stream);
|
||||
|
||||
YoloLayer::YoloLayer (const void* data, size_t length)
|
||||
{
|
||||
const char *d = static_cast<const char*>(data);
|
||||
|
||||
read(d, m_NumBBoxes);
|
||||
read(d, m_NumClasses);
|
||||
read(d, m_NetWidth);
|
||||
read(d, m_NetHeight);
|
||||
read(d, m_GridSizeX);
|
||||
read(d, m_GridSizeY);
|
||||
read(d, m_Type);
|
||||
read(d, m_NumClasses);
|
||||
read(d, m_NewCoords);
|
||||
read(d, m_ScaleXY);
|
||||
read(d, m_OutputSize);
|
||||
read(d, m_Type);
|
||||
read(d, m_TopK);
|
||||
read(d, m_ScoreThreshold);
|
||||
|
||||
uint anchorsSize;
|
||||
read(d, anchorsSize);
|
||||
for (uint i = 0; i < anchorsSize; i++) {
|
||||
float result;
|
||||
read(d, result);
|
||||
m_Anchors.push_back(result);
|
||||
uint yoloTensorsSize;
|
||||
read(d, yoloTensorsSize);
|
||||
for (uint i = 0; i < yoloTensorsSize; ++i)
|
||||
{
|
||||
TensorInfo curYoloTensor;
|
||||
read(d, curYoloTensor.gridSizeX);
|
||||
read(d, curYoloTensor.gridSizeY);
|
||||
read(d, curYoloTensor.numBBoxes);
|
||||
read(d, curYoloTensor.scaleXY);
|
||||
|
||||
uint anchorsSize;
|
||||
read(d, anchorsSize);
|
||||
for (uint j = 0; j < anchorsSize; j++)
|
||||
{
|
||||
float result;
|
||||
read(d, result);
|
||||
curYoloTensor.anchors.push_back(result);
|
||||
}
|
||||
|
||||
uint maskSize;
|
||||
read(d, maskSize);
|
||||
for (uint j = 0; j < maskSize; j++)
|
||||
{
|
||||
int result;
|
||||
read(d, result);
|
||||
curYoloTensor.mask.push_back(result);
|
||||
}
|
||||
m_YoloTensors.push_back(curYoloTensor);
|
||||
}
|
||||
|
||||
uint maskSize;
|
||||
read(d, maskSize);
|
||||
for (uint i = 0; i < maskSize; i++) {
|
||||
int result;
|
||||
read(d, result);
|
||||
m_Mask.push_back(result);
|
||||
}
|
||||
|
||||
if (m_Anchors.size() > 0) {
|
||||
float* anchors = m_Anchors.data();
|
||||
CUDA_CHECK(cudaMallocHost(&p_Anchors, m_Anchors.size() * sizeof(float)));
|
||||
CUDA_CHECK(cudaMemcpy(p_Anchors, anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
if (m_Mask.size() > 0) {
|
||||
int* mask = m_Mask.data();
|
||||
CUDA_CHECK(cudaMallocHost(&p_Mask, m_Mask.size() * sizeof(int)));
|
||||
CUDA_CHECK(cudaMemcpy(p_Mask, mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
kNUM_BBOXES = m_NumBBoxes;
|
||||
kNUM_CLASSES = m_NumClasses;
|
||||
};
|
||||
|
||||
YoloLayer::YoloLayer (
|
||||
const uint& numBBoxes, const uint& numClasses, const uint& netWidth, const uint& netHeight,
|
||||
const uint& gridSizeX, const uint& gridSizeY, const uint& modelType, const uint& newCoords,
|
||||
const float& scaleXY, const std::vector<float> anchors,
|
||||
const std::vector<int> mask) :
|
||||
m_NumBBoxes(numBBoxes),
|
||||
m_NumClasses(numClasses),
|
||||
YoloLayer::YoloLayer(
|
||||
const uint& netWidth, const uint& netHeight, const uint& numClasses, const uint& newCoords,
|
||||
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize, const uint& modelType, const uint& topK,
|
||||
const float& scoreThreshold) :
|
||||
m_NetWidth(netWidth),
|
||||
m_NetHeight(netHeight),
|
||||
m_GridSizeX(gridSizeX),
|
||||
m_GridSizeY(gridSizeY),
|
||||
m_Type(modelType),
|
||||
m_NumClasses(numClasses),
|
||||
m_NewCoords(newCoords),
|
||||
m_ScaleXY(scaleXY),
|
||||
m_Anchors(anchors),
|
||||
m_Mask(mask)
|
||||
m_YoloTensors(yoloTensors),
|
||||
m_OutputSize(outputSize),
|
||||
m_Type(modelType),
|
||||
m_TopK(topK),
|
||||
m_ScoreThreshold(scoreThreshold)
|
||||
{
|
||||
assert(m_NumBBoxes > 0);
|
||||
assert(m_NumClasses > 0);
|
||||
assert(m_NetWidth > 0);
|
||||
assert(m_NetHeight > 0);
|
||||
assert(m_GridSizeX > 0);
|
||||
assert(m_GridSizeY > 0);
|
||||
|
||||
m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBBoxes * (4 + 1 + m_NumClasses));
|
||||
|
||||
if (m_Anchors.size() > 0) {
|
||||
float* anchors = m_Anchors.data();
|
||||
CUDA_CHECK(cudaMallocHost(&p_Anchors, m_Anchors.size() * sizeof(float)));
|
||||
CUDA_CHECK(cudaMemcpy(p_Anchors, anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
if (m_Mask.size() > 0) {
|
||||
int* mask = m_Mask.data();
|
||||
CUDA_CHECK(cudaMallocHost(&p_Mask, m_Mask.size() * sizeof(int)));
|
||||
CUDA_CHECK(cudaMemcpy(p_Mask, mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
kNUM_BBOXES = m_NumBBoxes;
|
||||
kNUM_CLASSES = m_NumClasses;
|
||||
};
|
||||
|
||||
YoloLayer::~YoloLayer()
|
||||
{
|
||||
if (m_Anchors.size() > 0) {
|
||||
CUDA_CHECK(cudaFreeHost(p_Anchors));
|
||||
}
|
||||
if (m_Mask.size() > 0) {
|
||||
CUDA_CHECK(cudaFreeHost(p_Mask));
|
||||
}
|
||||
}
|
||||
|
||||
nvinfer1::Dims
|
||||
YoloLayer::getOutputDimensions(
|
||||
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
|
||||
{
|
||||
assert(index == 0);
|
||||
assert(nbInputDims == 1);
|
||||
return inputs[0];
|
||||
assert(index < 3);
|
||||
if (index == 0) {
|
||||
return nvinfer1::Dims3(m_TopK, 1, 4);
|
||||
}
|
||||
return nvinfer1::DimsHW(m_TopK, m_NumClasses);
|
||||
}
|
||||
|
||||
bool YoloLayer::supportsFormat (
|
||||
@@ -188,43 +164,116 @@ YoloLayer::configureWithFormat (
|
||||
const nvinfer1::Dims* outputDims, int nbOutputs,
|
||||
nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
|
||||
{
|
||||
assert(nbInputs == 1);
|
||||
assert(nbInputs > 0);
|
||||
assert(format == nvinfer1::PluginFormat::kLINEAR);
|
||||
assert(inputDims != nullptr);
|
||||
}
|
||||
|
||||
int32_t YoloLayer::enqueue (
|
||||
int32_t batchSize, void const* const* inputs, void* const* outputs, void* workspace,
|
||||
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
|
||||
cudaStream_t stream) noexcept
|
||||
{
|
||||
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
|
||||
CUDA_CHECK(cudaYoloLayer_r(
|
||||
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
|
||||
m_NumClasses, m_NumBBoxes, m_OutputSize, 2.0, p_Anchors, p_Mask, stream));
|
||||
}
|
||||
else if (m_Type == 1) {
|
||||
if (m_NewCoords) {
|
||||
CUDA_CHECK(cudaYoloLayer_nc(
|
||||
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
|
||||
m_NumClasses, m_NumBBoxes, m_OutputSize, m_ScaleXY, p_Anchors, p_Mask, stream));
|
||||
void* countData = workspace;
|
||||
void* bboxData = outputs[0];
|
||||
void* scoreData = outputs[1];
|
||||
|
||||
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)bboxData, 0, sizeof(float) * m_TopK * 4 * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)scoreData, 0, sizeof(float) * m_TopK * m_NumClasses * batchSize, stream));
|
||||
|
||||
void* d_indexes;
|
||||
CUDA_CHECK(cudaMallocHost(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
|
||||
|
||||
void* d_scores;
|
||||
CUDA_CHECK(cudaMallocHost(&d_scores, sizeof(float) * m_OutputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
|
||||
|
||||
void* d_boxes;
|
||||
CUDA_CHECK(cudaMallocHost(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
|
||||
|
||||
void* d_classes;
|
||||
CUDA_CHECK(cudaMallocHost(&d_classes, sizeof(int) * m_OutputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
|
||||
|
||||
uint yoloTensorsSize = m_YoloTensors.size();
|
||||
for (uint i = 0; i < yoloTensorsSize; ++i)
|
||||
{
|
||||
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
|
||||
|
||||
uint numBBoxes = curYoloTensor.numBBoxes;
|
||||
float scaleXY = curYoloTensor.scaleXY;
|
||||
uint gridSizeX = curYoloTensor.gridSizeX;
|
||||
uint gridSizeY = curYoloTensor.gridSizeY;
|
||||
std::vector<float> anchors = curYoloTensor.anchors;
|
||||
std::vector<int> mask = curYoloTensor.mask;
|
||||
|
||||
void* v_anchors;
|
||||
void* v_mask;
|
||||
if (anchors.size() > 0) {
|
||||
float* f_anchors = anchors.data();
|
||||
CUDA_CHECK(cudaMallocHost(&v_anchors, sizeof(float) * anchors.size()));
|
||||
CUDA_CHECK(cudaMemcpy(v_anchors, f_anchors, sizeof(float) * anchors.size(), cudaMemcpyHostToDevice));
|
||||
}
|
||||
if (mask.size() > 0) {
|
||||
int* f_mask = mask.data();
|
||||
CUDA_CHECK(cudaMallocHost(&v_mask, sizeof(int) * mask.size()));
|
||||
CUDA_CHECK(cudaMemcpy(v_mask, f_mask, sizeof(int) * mask.size(), cudaMemcpyHostToDevice));
|
||||
}
|
||||
|
||||
uint64_t inputSize = gridSizeX * gridSizeY * (numBBoxes * (4 + 1 + m_NumClasses));
|
||||
|
||||
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
|
||||
CUDA_CHECK(cudaYoloLayer_r(
|
||||
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, 2.0, v_anchors,
|
||||
v_mask, stream));
|
||||
}
|
||||
else if (m_Type == 1) {
|
||||
if (m_NewCoords) {
|
||||
CUDA_CHECK(cudaYoloLayer_nc(
|
||||
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
|
||||
v_anchors, v_mask, stream));
|
||||
}
|
||||
else {
|
||||
CUDA_CHECK(cudaYoloLayer(
|
||||
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
|
||||
v_anchors, v_mask, stream));
|
||||
}
|
||||
}
|
||||
else {
|
||||
CUDA_CHECK(cudaYoloLayer(
|
||||
inputs[0], outputs[0], batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
|
||||
m_NumClasses, m_NumBBoxes, m_OutputSize, m_ScaleXY, p_Anchors, p_Mask, stream));
|
||||
void* softmax;
|
||||
CUDA_CHECK(cudaMallocHost(&softmax, sizeof(float) * inputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize));
|
||||
|
||||
CUDA_CHECK(cudaRegionLayer(
|
||||
inputs[i], softmax, d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors,
|
||||
stream));
|
||||
|
||||
CUDA_CHECK(cudaFreeHost(softmax));
|
||||
}
|
||||
|
||||
if (anchors.size() > 0) {
|
||||
CUDA_CHECK(cudaFreeHost(v_anchors));
|
||||
}
|
||||
if (mask.size() > 0) {
|
||||
CUDA_CHECK(cudaFreeHost(v_mask));
|
||||
}
|
||||
}
|
||||
else {
|
||||
void* softmax;
|
||||
cudaMallocHost(&softmax, sizeof(outputs[0]));
|
||||
cudaMemcpy(softmax, outputs[0], sizeof(outputs[0]), cudaMemcpyHostToDevice);
|
||||
|
||||
CUDA_CHECK(cudaRegionLayer(
|
||||
inputs[0], outputs[0], softmax, batchSize, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY,
|
||||
m_NumClasses, m_NumBBoxes, m_OutputSize, p_Anchors, stream));
|
||||
CUDA_CHECK(sortDetections(
|
||||
d_indexes, d_scores, d_boxes, d_classes, bboxData, scoreData, countData, batchSize, m_OutputSize, m_TopK,
|
||||
m_NumClasses, stream));
|
||||
|
||||
CUDA_CHECK(cudaFreeHost(d_indexes));
|
||||
CUDA_CHECK(cudaFreeHost(d_scores));
|
||||
CUDA_CHECK(cudaFreeHost(d_boxes));
|
||||
CUDA_CHECK(cudaFreeHost(d_classes));
|
||||
|
||||
CUDA_CHECK(cudaFreeHost(softmax));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -232,18 +281,28 @@ size_t YoloLayer::getSerializationSize() const noexcept
|
||||
{
|
||||
size_t totalSize = 0;
|
||||
|
||||
totalSize += sizeof(m_NumBBoxes);
|
||||
totalSize += sizeof(m_NumClasses);
|
||||
totalSize += sizeof(m_NetWidth);
|
||||
totalSize += sizeof(m_NetHeight);
|
||||
totalSize += sizeof(m_GridSizeX);
|
||||
totalSize += sizeof(m_GridSizeY);
|
||||
totalSize += sizeof(m_Type);
|
||||
totalSize += sizeof(m_NumClasses);
|
||||
totalSize += sizeof(m_NewCoords);
|
||||
totalSize += sizeof(m_ScaleXY);
|
||||
totalSize += sizeof(m_OutputSize);
|
||||
totalSize += sizeof(uint) + sizeof(m_Anchors[0]) * m_Anchors.size();
|
||||
totalSize += sizeof(uint) + sizeof(m_Mask[0]) * m_Mask.size();
|
||||
totalSize += sizeof(m_Type);
|
||||
totalSize += sizeof(m_TopK);
|
||||
totalSize += sizeof(m_ScoreThreshold);
|
||||
|
||||
uint yoloTensorsSize = m_YoloTensors.size();
|
||||
totalSize += sizeof(yoloTensorsSize);
|
||||
|
||||
for (uint i = 0; i < yoloTensorsSize; ++i)
|
||||
{
|
||||
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
|
||||
totalSize += sizeof(curYoloTensor.gridSizeX);
|
||||
totalSize += sizeof(curYoloTensor.gridSizeY);
|
||||
totalSize += sizeof(curYoloTensor.numBBoxes);
|
||||
totalSize += sizeof(curYoloTensor.scaleXY);
|
||||
totalSize += sizeof(uint) + sizeof(curYoloTensor.anchors[0]) * curYoloTensor.anchors.size();
|
||||
totalSize += sizeof(uint) + sizeof(curYoloTensor.mask[0]) * curYoloTensor.mask.size();
|
||||
}
|
||||
|
||||
return totalSize;
|
||||
}
|
||||
@@ -252,35 +311,46 @@ void YoloLayer::serialize(void* buffer) const noexcept
|
||||
{
|
||||
char *d = static_cast<char*>(buffer);
|
||||
|
||||
write(d, m_NumBBoxes);
|
||||
write(d, m_NumClasses);
|
||||
write(d, m_NetWidth);
|
||||
write(d, m_NetHeight);
|
||||
write(d, m_GridSizeX);
|
||||
write(d, m_GridSizeY);
|
||||
write(d, m_Type);
|
||||
write(d, m_NumClasses);
|
||||
write(d, m_NewCoords);
|
||||
write(d, m_ScaleXY);
|
||||
write(d, m_OutputSize);
|
||||
write(d, m_Type);
|
||||
write(d, m_TopK);
|
||||
write(d, m_ScoreThreshold);
|
||||
|
||||
uint anchorsSize = m_Anchors.size();
|
||||
write(d, anchorsSize);
|
||||
for (uint i = 0; i < anchorsSize; i++) {
|
||||
write(d, m_Anchors[i]);
|
||||
}
|
||||
uint yoloTensorsSize = m_YoloTensors.size();
|
||||
write(d, yoloTensorsSize);
|
||||
for (uint i = 0; i < yoloTensorsSize; ++i)
|
||||
{
|
||||
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
|
||||
write(d, curYoloTensor.gridSizeX);
|
||||
write(d, curYoloTensor.gridSizeY);
|
||||
write(d, curYoloTensor.numBBoxes);
|
||||
write(d, curYoloTensor.scaleXY);
|
||||
|
||||
uint maskSize = m_Mask.size();
|
||||
write(d, maskSize);
|
||||
for (uint i = 0; i < maskSize; i++) {
|
||||
write(d, m_Mask[i]);
|
||||
uint anchorsSize = curYoloTensor.anchors.size();
|
||||
write(d, anchorsSize);
|
||||
for (uint j = 0; j < anchorsSize; ++j)
|
||||
{
|
||||
write(d, curYoloTensor.anchors[j]);
|
||||
}
|
||||
|
||||
uint maskSize = curYoloTensor.mask.size();
|
||||
write(d, maskSize);
|
||||
for (uint j = 0; j < maskSize; ++j)
|
||||
{
|
||||
write(d, curYoloTensor.mask[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
|
||||
{
|
||||
return new YoloLayer (
|
||||
m_NumBBoxes, m_NumClasses, m_NetWidth, m_NetHeight, m_GridSizeX, m_GridSizeY, m_Type,
|
||||
m_NewCoords, m_ScaleXY, m_Anchors, m_Mask);
|
||||
m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize, m_Type, m_TopK,
|
||||
m_ScoreThreshold);
|
||||
}
|
||||
|
||||
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);
|
||||
|
||||
Reference in New Issue
Block a user