GPU Batched NMS
This commit is contained in:
@@ -3,16 +3,12 @@
|
||||
* https://www.github.com/marcoslucianops
|
||||
*/
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
__global__ void gpuYoloLayer_nc(
|
||||
const float* input, float* output, const uint netWidth, const uint netHeight, const uint gridSizeX,
|
||||
const uint gridSizeY, const uint numOutputClasses, const uint numBBoxes, const float scaleXY,
|
||||
const float* anchors, const int* mask)
|
||||
const float* input, int* d_indexes, float* d_scores, float* d_boxes, int* d_classes, int* countData,
|
||||
const float scoreThreshold, const uint netWidth, const uint netHeight, const uint gridSizeX, const uint gridSizeY,
|
||||
const uint numOutputClasses, const uint numBBoxes, const float scaleXY, const float* anchors, const int* mask)
|
||||
{
|
||||
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
@@ -26,28 +22,32 @@ __global__ void gpuYoloLayer_nc(
|
||||
const int numGridCells = gridSizeX * gridSizeY;
|
||||
const int bbindex = y_id * gridSizeX + x_id;
|
||||
|
||||
const float objectness
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
|
||||
|
||||
if (objectness < scoreThreshold) return;
|
||||
|
||||
int count = (int)atomicAdd(&countData[0], 1);
|
||||
|
||||
const float alpha = scaleXY;
|
||||
const float beta = -0.5 * (scaleXY - 1);
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
|
||||
float x
|
||||
= (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
|
||||
* alpha + beta + x_id) * netWidth / gridSizeX;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
|
||||
float y
|
||||
= (input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
|
||||
* alpha + beta + y_id) * netHeight / gridSizeY;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
|
||||
float w
|
||||
= __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2)
|
||||
* anchors[mask[z_id] * 2];
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
|
||||
float h
|
||||
= __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2)
|
||||
* anchors[mask[z_id] * 2 + 1];
|
||||
|
||||
const float objectness
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
|
||||
|
||||
float maxProb = 0.0f;
|
||||
int maxIndex = -1;
|
||||
|
||||
@@ -63,22 +63,26 @@ __global__ void gpuYoloLayer_nc(
|
||||
}
|
||||
}
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
|
||||
= objectness * maxProb;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 5)]
|
||||
= maxIndex;
|
||||
d_indexes[count] = count;
|
||||
d_scores[count] = objectness * maxProb + 1.f;
|
||||
d_boxes[count * 4 + 0] = x - 0.5 * w;
|
||||
d_boxes[count * 4 + 1] = y - 0.5 * h;
|
||||
d_boxes[count * 4 + 2] = x + 0.5 * w;
|
||||
d_boxes[count * 4 + 3] = y + 0.5 * h;
|
||||
d_classes[count] = maxIndex;
|
||||
}
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(
|
||||
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
|
||||
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(
|
||||
const void* input, void* output, const uint& batchSize, const uint& netWidth, const uint& netHeight,
|
||||
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
uint64_t& outputSize, const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads_per_block(16, 16, 4);
|
||||
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
|
||||
@@ -88,9 +92,12 @@ cudaError_t cudaYoloLayer_nc(
|
||||
for (unsigned int batch = 0; batch < batchSize; ++batch)
|
||||
{
|
||||
gpuYoloLayer_nc<<<number_of_blocks, threads_per_block, 0, stream>>>(
|
||||
reinterpret_cast<const float*>(input) + (batch * outputSize),
|
||||
reinterpret_cast<float*>(output) + (batch * outputSize),
|
||||
netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, scaleXY,
|
||||
reinterpret_cast<const float*>(input) + (batch * inputSize),
|
||||
reinterpret_cast<int*>(d_indexes) + (batch * outputSize),
|
||||
reinterpret_cast<float*>(d_scores) + (batch * outputSize),
|
||||
reinterpret_cast<float*>(d_boxes) + (batch * 4 * outputSize),
|
||||
reinterpret_cast<int*>(d_classes) + (batch * outputSize), reinterpret_cast<int*>(countData) + (batch),
|
||||
scoreThreshold, netWidth, netHeight, gridSizeX, gridSizeY, numOutputClasses, numBBoxes, scaleXY,
|
||||
reinterpret_cast<const float*>(anchors), reinterpret_cast<const int*>(mask));
|
||||
}
|
||||
return cudaGetLastError();
|
||||
|
||||
Reference in New Issue
Block a user