GPU Batched NMS
This commit is contained in:
@@ -38,15 +38,15 @@ extern "C" bool NvDsInferParseYolo(
|
||||
std::vector<NvDsInferParseObjectInfo>& objectList);
|
||||
|
||||
static NvDsInferParseObjectInfo convertBBox(
|
||||
const float& bx, const float& by, const float& bw,
|
||||
const float& bh, const uint& netW, const uint& netH)
|
||||
const float& bx1, const float& by1, const float& bx2,
|
||||
const float& by2, const uint& netW, const uint& netH)
|
||||
{
|
||||
NvDsInferParseObjectInfo b;
|
||||
|
||||
float x1 = bx - bw / 2;
|
||||
float y1 = by - bh / 2;
|
||||
float x2 = x1 + bw;
|
||||
float y2 = y1 + bh;
|
||||
float x1 = bx1;
|
||||
float y1 = by1;
|
||||
float x2 = bx2;
|
||||
float y2 = by2;
|
||||
|
||||
x1 = clamp(x1, 0, netW);
|
||||
y1 = clamp(y1, 0, netH);
|
||||
@@ -62,11 +62,11 @@ static NvDsInferParseObjectInfo convertBBox(
|
||||
}
|
||||
|
||||
static void addBBoxProposal(
|
||||
const float bx, const float by, const float bw, const float bh,
|
||||
const float bx1, const float by1, const float bx2, const float by2,
|
||||
const uint& netW, const uint& netH, const int maxIndex,
|
||||
const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
|
||||
{
|
||||
NvDsInferParseObjectInfo bbi = convertBBox(bx, by, bw, bh, netW, netH);
|
||||
NvDsInferParseObjectInfo bbi = convertBBox(bx1, by1, bx2, by2, netW, netH);
|
||||
if (bbi.width < 1 || bbi.height < 1) return;
|
||||
|
||||
bbi.detectionConfidence = maxProb;
|
||||
@@ -75,34 +75,25 @@ static void addBBoxProposal(
|
||||
}
|
||||
|
||||
static std::vector<NvDsInferParseObjectInfo> decodeYoloTensor(
|
||||
const float* detections,
|
||||
const uint gridSizeW, const uint gridSizeH, const uint numBBoxes,
|
||||
const uint numOutputClasses, const uint& netW, const uint& netH)
|
||||
const int* counts, const float* boxes,
|
||||
const float* scores, const float* classes,
|
||||
const uint& netW, const uint& netH)
|
||||
{
|
||||
std::vector<NvDsInferParseObjectInfo> binfo;
|
||||
for (uint y = 0; y < gridSizeH; ++y) {
|
||||
for (uint x = 0; x < gridSizeW; ++x) {
|
||||
for (uint b = 0; b < numBBoxes; ++b)
|
||||
{
|
||||
const int numGridCells = gridSizeH * gridSizeW;
|
||||
const int bbindex = y * gridSizeW + x;
|
||||
|
||||
const float bx
|
||||
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 0)];
|
||||
const float by
|
||||
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 1)];
|
||||
const float bw
|
||||
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 2)];
|
||||
const float bh
|
||||
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 3)];
|
||||
const float maxProb
|
||||
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 4)];
|
||||
const int maxIndex
|
||||
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 5)];
|
||||
uint numBoxes = counts[0];
|
||||
|
||||
addBBoxProposal(bx, by, bw, bh, netW, netH, maxIndex, maxProb, binfo);
|
||||
}
|
||||
}
|
||||
for (uint b = 0; b < numBoxes; ++b)
|
||||
{
|
||||
float bx1 = boxes[b * 4 + 0];
|
||||
float by1 = boxes[b * 4 + 1];
|
||||
float bx2 = boxes[b * 4 + 2];
|
||||
float by2 = boxes[b * 4 + 3];
|
||||
|
||||
float maxProb = scores[b];
|
||||
int maxIndex = classes[b];
|
||||
|
||||
addBBoxProposal(bx1, by1, bx2, by2, netW, netH, maxIndex, maxProb, binfo);
|
||||
}
|
||||
return binfo;
|
||||
}
|
||||
@@ -112,7 +103,6 @@ static bool NvDsInferParseCustomYolo(
|
||||
NvDsInferNetworkInfo const& networkInfo,
|
||||
NvDsInferParseDetectionParams const& detectionParams,
|
||||
std::vector<NvDsInferParseObjectInfo>& objectList,
|
||||
const uint &numBBoxes,
|
||||
const uint &numClasses)
|
||||
{
|
||||
if (outputLayersInfo.empty())
|
||||
@@ -130,18 +120,17 @@ static bool NvDsInferParseCustomYolo(
|
||||
|
||||
std::vector<NvDsInferParseObjectInfo> objects;
|
||||
|
||||
for (uint idx = 0; idx < outputLayersInfo.size(); ++idx)
|
||||
for (uint idx = 0; idx < outputLayersInfo.size() / 4; ++idx)
|
||||
{
|
||||
const NvDsInferLayerInfo &layer = outputLayersInfo[idx];
|
||||
|
||||
assert(layer.inferDims.numDims == 3);
|
||||
const uint gridSizeH = layer.inferDims.d[1];
|
||||
const uint gridSizeW = layer.inferDims.d[2];
|
||||
const NvDsInferLayerInfo &counts = outputLayersInfo[idx * 4 + 0];
|
||||
const NvDsInferLayerInfo &boxes = outputLayersInfo[idx * 4 + 1];
|
||||
const NvDsInferLayerInfo &scores = outputLayersInfo[idx * 4 + 2];
|
||||
const NvDsInferLayerInfo &classes = outputLayersInfo[idx * 4 + 3];
|
||||
|
||||
std::vector<NvDsInferParseObjectInfo> outObjs =
|
||||
decodeYoloTensor(
|
||||
(const float*)(layer.buffer),
|
||||
gridSizeW, gridSizeH, numBBoxes, numClasses,
|
||||
(const int*)(counts.buffer), (const float*)(boxes.buffer),
|
||||
(const float*)(scores.buffer), (const float*)(classes.buffer),
|
||||
networkInfo.width, networkInfo.height);
|
||||
|
||||
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
|
||||
@@ -158,11 +147,10 @@ extern "C" bool NvDsInferParseYolo(
|
||||
NvDsInferParseDetectionParams const& detectionParams,
|
||||
std::vector<NvDsInferParseObjectInfo>& objectList)
|
||||
{
|
||||
uint numBBoxes = kNUM_BBOXES;
|
||||
uint numClasses = kNUM_CLASSES;
|
||||
int num_classes = kNUM_CLASSES;
|
||||
|
||||
return NvDsInferParseCustomYolo (
|
||||
outputLayersInfo, networkInfo, detectionParams, objectList, numBBoxes, numClasses);
|
||||
outputLayersInfo, networkInfo, detectionParams, objectList, num_classes);
|
||||
}
|
||||
|
||||
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo);
|
||||
|
||||
Reference in New Issue
Block a user