DeepStream 6.1 update
This commit is contained in:
@@ -193,8 +193,8 @@ YoloLayer::configureWithFormat (
|
|||||||
assert(inputDims != nullptr);
|
assert(inputDims != nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
int YoloLayer::enqueue (
|
int32_t YoloLayer::enqueue (
|
||||||
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
|
int32_t batchSize, void const* const* inputs, void* const* outputs, void* workspace,
|
||||||
cudaStream_t stream) noexcept
|
cudaStream_t stream) noexcept
|
||||||
{
|
{
|
||||||
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
|
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
|
||||||
|
|||||||
@@ -81,8 +81,8 @@ public:
|
|||||||
int initialize () noexcept override { return 0; }
|
int initialize () noexcept override { return 0; }
|
||||||
void terminate () noexcept override {}
|
void terminate () noexcept override {}
|
||||||
size_t getWorkspaceSize (int maxBatchSize) const noexcept override { return 0; }
|
size_t getWorkspaceSize (int maxBatchSize) const noexcept override { return 0; }
|
||||||
int enqueue (
|
int32_t enqueue (
|
||||||
int batchSize, void const* const* inputs, void* const* outputs,
|
int32_t batchSize, void const* const* inputs, void* const* outputs,
|
||||||
void* workspace, cudaStream_t stream) noexcept override;
|
void* workspace, cudaStream_t stream) noexcept override;
|
||||||
size_t getSerializationSize() const noexcept override;
|
size_t getSerializationSize() const noexcept override;
|
||||||
void serialize (void* buffer) const noexcept override;
|
void serialize (void* buffer) const noexcept override;
|
||||||
|
|||||||
330
readme.md
330
readme.md
@@ -1,11 +1,12 @@
|
|||||||
# DeepStream-Yolo
|
# DeepStream-Yolo
|
||||||
|
|
||||||
NVIDIA DeepStream SDK 6.0.1 configuration for YOLO models
|
NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
|
||||||
|
|
||||||
### Future updates
|
### Future updates
|
||||||
|
|
||||||
* New documentation for multiple models
|
* New documentation for multiple models
|
||||||
* DeepStream tutorials
|
* DeepStream tutorials
|
||||||
|
* Native YOLOX support
|
||||||
* Native PP-YOLO support
|
* Native PP-YOLO support
|
||||||
* Dynamic batch-size
|
* Dynamic batch-size
|
||||||
|
|
||||||
@@ -44,20 +45,36 @@ NVIDIA DeepStream SDK 6.0.1 configuration for YOLO models
|
|||||||
|
|
||||||
### Requirements
|
### Requirements
|
||||||
|
|
||||||
#### x86 platform
|
#### DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
* [Ubuntu 18.04](https://releases.ubuntu.com/18.04.6/)
|
* [Ubuntu 20.04](https://releases.ubuntu.com/20.04/)
|
||||||
* [CUDA 11.4](https://developer.nvidia.com/cuda-toolkit)
|
* [CUDA 11.6 Update 1](https://developer.nvidia.com/cuda-11-6-1-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local)
|
||||||
* [TensorRT 8.0 GA (8.0.1)](https://developer.nvidia.com/tensorrt)
|
* [TensorRT 8.2 GA Update 4 (8.2.5.1)](https://developer.nvidia.com/nvidia-tensorrt-8x-download)
|
||||||
* [cuDNN >= 8.2](https://developer.nvidia.com/cudnn)
|
* [NVIDIA Driver 510.47.03](https://www.nvidia.com.br/Download/index.aspx)
|
||||||
* [NVIDIA Driver >= 470.63.01](https://www.nvidia.com.br/Download/index.aspx)
|
* [NVIDIA DeepStream SDK 6.1](https://developer.nvidia.com/deepstream-sdk)
|
||||||
* [NVIDIA DeepStream SDK 6.0.1 (6.0)](https://developer.nvidia.com/deepstream-sdk)
|
* [GStreamer 1.16.2](https://gstreamer.freedesktop.org/)
|
||||||
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
||||||
|
|
||||||
#### Jetson platform
|
#### DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
* [JetPack 4.6.1](https://developer.nvidia.com/embedded/jetpack)
|
* [Ubuntu 18.04](https://releases.ubuntu.com/18.04.6/)
|
||||||
* [NVIDIA DeepStream SDK 6.0.1 (6.0)](https://developer.nvidia.com/deepstream-sdk)
|
* [CUDA 11.4 Update 1](https://developer.nvidia.com/cuda-11-4-1-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=18.04&target_type=runfile_local)
|
||||||
|
* [TensorRT 8.0 GA (8.0.1)](https://developer.nvidia.com/nvidia-tensorrt-8x-download)
|
||||||
|
* [NVIDIA Driver >= 470.63.01](https://www.nvidia.com.br/Download/index.aspx)
|
||||||
|
* [NVIDIA DeepStream SDK 6.0.1 / 6.0](https://developer.nvidia.com/deepstream-sdk-download-tesla-archived)
|
||||||
|
* [GStreamer 1.14.5](https://gstreamer.freedesktop.org/)
|
||||||
|
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
||||||
|
|
||||||
|
#### DeepStream 6.1 on Jetson platform
|
||||||
|
|
||||||
|
* [JetPack 5.0.1 DP](https://developer.nvidia.com/embedded/jetpack)
|
||||||
|
* [NVIDIA DeepStream SDK 6.1](https://developer.nvidia.com/deepstream-sdk)
|
||||||
|
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
||||||
|
|
||||||
|
#### DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||||
|
|
||||||
|
* [JetPack 4.6.1](https://developer.nvidia.com/embedded/jetpack-sdk-461)
|
||||||
|
* [NVIDIA DeepStream SDK 6.0.1 / 6.0](https://developer.nvidia.com/embedded/deepstream-on-jetson-downloads-archived)
|
||||||
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
|
||||||
|
|
||||||
### For YOLOv5 and YOLOR
|
### For YOLOv5 and YOLOR
|
||||||
@@ -68,7 +85,7 @@ NVIDIA DeepStream SDK 6.0.1 configuration for YOLO models
|
|||||||
|
|
||||||
#### Jetson platform
|
#### Jetson platform
|
||||||
|
|
||||||
* [PyTorch >= 1.7.0](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-10-now-available/72048)
|
* [PyTorch >= 1.7.0](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-11-now-available/72048)
|
||||||
|
|
||||||
##
|
##
|
||||||
|
|
||||||
@@ -152,11 +169,129 @@ NOTE: Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_
|
|||||||
|
|
||||||
To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
|
To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
|
||||||
|
|
||||||
<details><summary>Open</summary>
|
<details><summary>DeepStream 6.1</summary>
|
||||||
|
|
||||||
#### 1. Disable Secure Boot in BIOS
|
#### 1. Disable Secure Boot in BIOS
|
||||||
|
|
||||||
<details><summary>If you are using a laptop with newer Intel/AMD processors, please update the kernel to newer version.</summary>
|
#### 2. Install dependencies
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
|
||||||
|
sudo apt-get install python3 python3-dev python3-pip
|
||||||
|
sudo apt-get install dkms
|
||||||
|
sudo apt-get install libssl1.1 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4 libyaml-cpp-dev
|
||||||
|
sudo apt-get install linux-headers-$(uname -r)
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: Purge all NVIDIA driver, CUDA, etc (replace $CUDA_PATH to your CUDA path).
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo nvidia-uninstall
|
||||||
|
sudo $CUDA_PATH/bin/cuda-uninstaller
|
||||||
|
sudo apt-get remove --purge '*nvidia*'
|
||||||
|
sudo apt-get remove --purge '*cuda*'
|
||||||
|
sudo apt-get remove --purge '*cudnn*'
|
||||||
|
sudo apt-get remove --purge '*tensorrt*'
|
||||||
|
sudo apt autoremove --purge && sudo apt autoclean && sudo apt clean
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 3. Install CUDA Keyring
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-keyring_1.0-1_all.deb
|
||||||
|
sudo dpkg -i cuda-keyring_1.0-1_all.deb
|
||||||
|
sudo apt-get update
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4. Download and install NVIDIA Driver
|
||||||
|
|
||||||
|
* TITAN, GeForce RTX / GTX series and RTX / Quadro series
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://us.download.nvidia.com/XFree86/Linux-x86_64/510.47.03/NVIDIA-Linux-x86_64-510.47.03.run
|
||||||
|
```
|
||||||
|
|
||||||
|
* Data center / Tesla series
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://us.download.nvidia.com/tesla/510.47.03/NVIDIA-Linux-x86_64-510.47.03.run
|
||||||
|
```
|
||||||
|
|
||||||
|
* Install
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo sh NVIDIA-Linux-x86_64-510.47.03.run --silent --disable-nouveau --dkms --install-libglvnd
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: If you are using a laptop with NVIDIA Optimius, run
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo apt-get install nvidia-prime
|
||||||
|
sudo prime-select nvidia
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Download and install CUDA
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://developer.download.nvidia.com/compute/cuda/11.6.1/local_installers/cuda_11.6.1_510.47.03_linux.run
|
||||||
|
sudo sh cuda_11.6.1_510.47.03_linux.run --silent --toolkit
|
||||||
|
```
|
||||||
|
|
||||||
|
* Export environment variables
|
||||||
|
|
||||||
|
```
|
||||||
|
nano ~/.bashrc
|
||||||
|
```
|
||||||
|
|
||||||
|
* Add
|
||||||
|
|
||||||
|
```
|
||||||
|
export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}}
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
|
||||||
|
```
|
||||||
|
|
||||||
|
* Run
|
||||||
|
|
||||||
|
```
|
||||||
|
source ~/.bashrc
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
#### 6. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT
|
||||||
|
|
||||||
|
TensorRT 8.2 GA Update 4 for Ubuntu 20.04 and CUDA 11.0, 11.1, 11.2, 11.3, 11.4 and 11.5 DEB local repo Package
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo dpkg -i nv-tensorrt-repo-ubuntu2004-cuda11.4-trt8.2.5.1-ga-20220505_1-1_amd64.deb
|
||||||
|
sudo apt-key add /var/nv-tensorrt-repo-ubuntu2004-cuda11.4-trt8.2.5.1-ga-20220505/82307095.pub
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt install tensorrt
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 7. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-sdk) and install the DeepStream SDK
|
||||||
|
|
||||||
|
DeepStream 6.1 for Servers and Workstations (.deb)
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo apt-get install ./deepstream-6.1_6.1.0-1_amd64.deb
|
||||||
|
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
|
||||||
|
sudo ln -snf /usr/local/cuda-11.6 /usr/local/cuda
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 8. Reboot the computer
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo reboot
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
<details><summary>DeepStream 6.0.1 / 6.0</summary>
|
||||||
|
|
||||||
|
#### 1. Disable Secure Boot in BIOS
|
||||||
|
|
||||||
|
<details><summary>If you are using a laptop with newer Intel/AMD processors and your Graphics in Settings->Details->About tab is llvmpipe, please update the kernel.</summary>
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb
|
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb
|
||||||
@@ -172,10 +307,10 @@ sudo reboot
|
|||||||
#### 2. Install dependencies
|
#### 2. Install dependencies
|
||||||
|
|
||||||
```
|
```
|
||||||
|
sudo apt-get update
|
||||||
sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
|
sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
|
||||||
sudo apt-get install python3 python3-dev python3-pip
|
sudo apt-get install python3 python3-dev python3-pip
|
||||||
sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4
|
sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4
|
||||||
sudo apt-get install libglvnd-dev
|
|
||||||
sudo apt-get install linux-headers-$(uname -r)
|
sudo apt-get install linux-headers-$(uname -r)
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -185,9 +320,11 @@ sudo apt-get install linux-headers-$(uname -r)
|
|||||||
sudo apt-get install dkms
|
sudo apt-get install dkms
|
||||||
```
|
```
|
||||||
|
|
||||||
**NOTE**: Purge all NVIDIA driver, CUDA, etc.
|
**NOTE**: Purge all NVIDIA driver, CUDA, etc (replace $CUDA_PATH to your CUDA path).
|
||||||
|
|
||||||
```
|
```
|
||||||
|
sudo nvidia-uninstall
|
||||||
|
sudo $CUDA_PATH/bin/cuda-uninstaller
|
||||||
sudo apt-get remove --purge '*nvidia*'
|
sudo apt-get remove --purge '*nvidia*'
|
||||||
sudo apt-get remove --purge '*cuda*'
|
sudo apt-get remove --purge '*cuda*'
|
||||||
sudo apt-get remove --purge '*cudnn*'
|
sudo apt-get remove --purge '*cudnn*'
|
||||||
@@ -195,54 +332,46 @@ sudo apt-get remove --purge '*tensorrt*'
|
|||||||
sudo apt autoremove --purge && sudo apt autoclean && sudo apt clean
|
sudo apt autoremove --purge && sudo apt autoclean && sudo apt clean
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 3. Disable Nouveau
|
#### 3. Install CUDA Keyring
|
||||||
|
|
||||||
```
|
```
|
||||||
sudo nano /etc/modprobe.d/blacklist-nouveau.conf
|
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-keyring_1.0-1_all.deb
|
||||||
|
sudo dpkg -i cuda-keyring_1.0-1_all.deb
|
||||||
|
sudo apt-get update
|
||||||
```
|
```
|
||||||
|
|
||||||
* Add
|
#### 4. Download and install NVIDIA Driver
|
||||||
|
|
||||||
```
|
|
||||||
blacklist nouveau
|
|
||||||
options nouveau modeset=0
|
|
||||||
```
|
|
||||||
|
|
||||||
* Run
|
|
||||||
|
|
||||||
```
|
|
||||||
sudo update-initramfs -u
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 4. Reboot the computer
|
|
||||||
|
|
||||||
```
|
|
||||||
sudo reboot
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 5. Download and install NVIDIA Driver without xconfig
|
|
||||||
|
|
||||||
* TITAN, GeForce RTX / GTX series and RTX / Quadro series
|
* TITAN, GeForce RTX / GTX series and RTX / Quadro series
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://us.download.nvidia.com/XFree86/Linux-x86_64/470.103.01/NVIDIA-Linux-x86_64-470.103.01.run
|
wget https://us.download.nvidia.com/XFree86/Linux-x86_64/470.129.06/NVIDIA-Linux-x86_64-470.129.06.run
|
||||||
sudo sh NVIDIA-Linux-x86_64-470.103.01.run
|
|
||||||
```
|
```
|
||||||
|
|
||||||
* Data center / Tesla series
|
* Data center / Tesla series
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://us.download.nvidia.com/tesla/470.103.01/NVIDIA-Linux-x86_64-470.103.01.run
|
wget https://us.download.nvidia.com/tesla/470.129.06/NVIDIA-Linux-x86_64-470.129.06.run
|
||||||
sudo sh NVIDIA-Linux-x86_64-470.103.01.run
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**NOTE**: Only if you are using default Ubuntu kernel, enable the DKMS during the installation.
|
* Install
|
||||||
|
|
||||||
#### 6. Download and install CUDA 11.4.3 without NVIDIA Driver
|
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda_11.4.3_470.82.01_linux.run
|
sudo sh NVIDIA-Linux-x86_64-470.129.06.run --silent --disable-nouveau --dkms --install-libglvnd
|
||||||
sudo sh cuda_11.4.3_470.82.01_linux.run
|
```
|
||||||
|
|
||||||
|
**NOTE**: If you are using a laptop with NVIDIA Optimius, run
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo apt-get install nvidia-prime
|
||||||
|
sudo prime-select nvidia
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Download and install CUDA
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://developer.download.nvidia.com/compute/cuda/11.4.1/local_installers/cuda_11.4.1_470.57.02_linux.run
|
||||||
|
sudo sh cuda_11.4.1_470.57.02_linux.run --silent --toolkit
|
||||||
```
|
```
|
||||||
|
|
||||||
* Export environment variables
|
* Export environment variables
|
||||||
@@ -262,38 +391,42 @@ export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRA
|
|||||||
|
|
||||||
```
|
```
|
||||||
source ~/.bashrc
|
source ~/.bashrc
|
||||||
sudo ldconfig
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**NOTE**: If you are using a laptop with NVIDIA Optimius, run
|
|
||||||
|
#### 6. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT
|
||||||
|
|
||||||
|
TensorRT 8.0.1 GA for Ubuntu 18.04 and CUDA 11.3 DEB local repo package
|
||||||
|
|
||||||
```
|
```
|
||||||
sudo apt-get install nvidia-prime
|
|
||||||
sudo prime-select nvidia
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 7. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT 8.0 GA (8.0.1)
|
|
||||||
|
|
||||||
```
|
|
||||||
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda-repo.list
|
|
||||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
|
|
||||||
sudo apt-key add 7fa2af80.pub
|
|
||||||
sudo apt-get update
|
|
||||||
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb
|
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb
|
||||||
sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub
|
sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub
|
||||||
sudo apt-get update
|
sudo apt-get update
|
||||||
sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3
|
sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 8. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-sdk) and install the DeepStream SDK 6.0.1 (6.0)
|
#### 7. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-sdk) and install the DeepStream SDK
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 for Servers and Workstations (.deb)
|
||||||
|
|
||||||
```
|
```
|
||||||
sudo apt-get install ./deepstream-6.0_6.0.1-1_amd64.deb
|
sudo apt-get install ./deepstream-6.0_6.0.1-1_amd64.deb
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0 for Servers and Workstations (.deb)
|
||||||
|
|
||||||
|
```
|
||||||
|
sudo apt-get install ./deepstream-6.0_6.0.0-1_amd64.deb
|
||||||
|
```
|
||||||
|
|
||||||
|
* Run
|
||||||
|
|
||||||
|
```
|
||||||
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
|
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
|
||||||
sudo ln -snf /usr/local/cuda-11.4 /usr/local/cuda
|
sudo ln -snf /usr/local/cuda-11.4 /usr/local/cuda
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 9. Reboot the computer
|
#### 8. Reboot the computer
|
||||||
|
|
||||||
```
|
```
|
||||||
sudo reboot
|
sudo reboot
|
||||||
@@ -316,13 +449,25 @@ cd DeepStream-Yolo
|
|||||||
|
|
||||||
#### 3. Compile lib
|
#### 3. Compile lib
|
||||||
|
|
||||||
* x86 platform
|
* DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
```
|
```
|
||||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
```
|
```
|
||||||
|
|
||||||
* Jetson platform
|
* DeepStream 6.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||||
|
|
||||||
```
|
```
|
||||||
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||||
@@ -403,13 +548,25 @@ python3 gen_wts_yoloV5.py -w yolov5n.pt
|
|||||||
|
|
||||||
#### 7. Compile lib
|
#### 7. Compile lib
|
||||||
|
|
||||||
* x86 platform
|
* DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
```
|
```
|
||||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
```
|
```
|
||||||
|
|
||||||
* Jetson platform
|
* DeepStream 6.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||||
|
|
||||||
```
|
```
|
||||||
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||||
@@ -522,13 +679,25 @@ python3 gen_wts_yolor.py -w yolor_csp.pt -c cfg/yolor_csp.cfg
|
|||||||
|
|
||||||
#### 7. Compile lib
|
#### 7. Compile lib
|
||||||
|
|
||||||
* x86 platform
|
* DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
```
|
```
|
||||||
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
```
|
```
|
||||||
|
|
||||||
* Jetson platform
|
* DeepStream 6.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||||
|
|
||||||
```
|
```
|
||||||
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||||
@@ -593,14 +762,28 @@ sudo apt-get install libopencv-dev
|
|||||||
|
|
||||||
#### 2. Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
|
#### 2. Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
|
||||||
|
|
||||||
* x86 platform
|
* DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
cd DeepStream-Yolo
|
||||||
|
CUDA_VER=11.6 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
```
|
```
|
||||||
cd DeepStream-Yolo
|
cd DeepStream-Yolo
|
||||||
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
|
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
```
|
```
|
||||||
|
|
||||||
* Jetson platform
|
* DeepStream 6.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
cd DeepStream-Yolo
|
||||||
|
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on Jetson platform
|
||||||
|
|
||||||
```
|
```
|
||||||
cd DeepStream-Yolo
|
cd DeepStream-Yolo
|
||||||
@@ -668,12 +851,9 @@ deepstream-app -c deepstream_app_config.txt
|
|||||||
|
|
||||||
### Extract metadata
|
### Extract metadata
|
||||||
|
|
||||||
You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps).
|
You can get metadata from deepstream in Python and C/C++. For C/C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps).
|
||||||
|
|
||||||
You need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsObjectMeta.html)), NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsFrameMeta.html)) and NvOSD_RectParams ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvOSD/NvOSD_RectParams.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvOSD__RectParams.html)) to get label, position, etc. of bboxes.
|
Basically, you need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C/C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsObjectMeta.html)) and NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C/C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsFrameMeta.html)) to get label, position, etc. of bboxes.
|
||||||
|
|
||||||
In C++ deepstream-app application, your code need be in analytics_done_buf_prob function.
|
|
||||||
In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.
|
|
||||||
|
|
||||||
##
|
##
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user