DeepStream 6.0 update

This commit is contained in:
unknown
2021-11-19 00:03:07 -03:00
parent 297e0e9119
commit cd017cc9bd
115 changed files with 277 additions and 9237 deletions

354
readme.md
View File

@@ -1,83 +1,234 @@
# DeepStream-Yolo
NVIDIA DeepStream SDK 5.1 configuration for YOLO models
# New update for DeepStream 6.0 and TensorRT is coming soon, stay tuned!
NVIDIA DeepStream SDK 6.0 configuration for YOLO models
### Future updates (comming soon, stay tuned)
* New documentation for custom model
* New documentation for multiple models
* DeepStream tutorials
* Native PyTorch support (YOLOv5 and YOLOR)
* Native PP-YOLO support
* Models benchmark
**NOTE**: The support for YOLOv5 was removed in this current update. If you want the old repo version, please use the commit 297e0e9 and DeepStream 5.1 requirements.
### Improvements on this repository
* Darknet CFG params parser (it doesn't need to edit nvdsparsebbox_Yolo.cpp or another file for native models)
* Support for new_coords, beta_nms and scale_x_y params
* Support for new models that aren't supported in official DeepStream SDK YOLO.
* Support for layers that aren't supported in official DeepStream SDK YOLO.
* Support for activations that aren't supported in official DeepStream SDK YOLO.
* Support for Convolutional groups
* **Support for INT8 calibration** (it isn't available for YOLOv5 models)
* **Support for non square models**
* Support for new models
* Support for new layers types
* Support for new activations
* Support for convolutional groups
* Support for INT8 calibration
* Support for non square models
##
Tutorial
### Getting started
* [Requirements](#requirements)
* [Tested models](#tested-models)
* [dGPU installation](#dgpu-installation)
* [Basic usage](#basic-usage)
* [INT8 calibration](#int8-calibration)
* [Configuring to your custom model](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/customModels.md)
* [Multiple YOLO inferences](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/multipleInferences.md)
TensorRT conversion
* Native (tested models below)
* [YOLOv4x-Mish](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)]
* [YOLOv4-CSP](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-csp) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights)]
* [YOLOv4](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights)]
* [YOLOv4-Tiny](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)]
* [YOLOv3-SPP](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-spp.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-spp.weights)]
* [YOLOv3](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg)] [[weights](https://pjreddie.com/media/files/yolov3.weights)]
* [YOLOv3-Tiny-PRN](https://github.com/WongKinYiu/PartialResidualNetworks) [[cfg](https://raw.githubusercontent.com/WongKinYiu/PartialResidualNetworks/master/cfg/yolov3-tiny-prn.cfg)] [[weights](https://github.com/WongKinYiu/PartialResidualNetworks/raw/master/model/yolov3-tiny-prn.weights)]
* [YOLOv3-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-tiny.weights)]
* [YOLOv3-Lite](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.weights)]
* [YOLOv3-Nano](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.weights)]
* [YOLO-Fastest 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.weights)]
* [YOLO-Fastest-XL 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.weights)]
* [YOLOv2](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg)] [[weights](https://pjreddie.com/media/files/yolov2.weights)]
* [YOLOv2-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov2-tiny.weights)]
* External
* [YOLOv5 5.0](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-5.0.md)
* [YOLOv5 4.0](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-4.0.md)
* [YOLOv5 3.X (3.0/3.1)](https://github.com/marcoslucianops/DeepStream-Yolo/blob/master/YOLOv5-3.X.md)
Benchmark
* [mAP/FPS comparison between models](#mapfps-comparison-between-models)
##
### Requirements
* [NVIDIA DeepStream SDK 5.1](https://developer.nvidia.com/deepstream-sdk)
* [DeepStream-Yolo Native](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/native) (for Darknet YOLO based models)
* [DeepStream-Yolo External](https://github.com/marcoslucianops/DeepStream-Yolo/tree/master/external) (for PyTorch YOLOv5 based model)
* [Ubuntu 18.04](https://releases.ubuntu.com/18.04.6/)
* [CUDA 11.4.3](https://developer.nvidia.com/cuda-toolkit)
* [TensorRT 8.0 GA (8.0.1)](https://developer.nvidia.com/tensorrt)
* [cuDNN >= 8.2](https://developer.nvidia.com/cudnn)
* [NVIDIA Driver >= 470.63.01](https://www.nvidia.com.br/Download/index.aspx)
* [NVIDIA DeepStream SDK 6.0](https://developer.nvidia.com/deepstream-sdk)
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
##
### Tested models
* [YOLOv4x-Mish](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4x-mish.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4x-mish.weights)]
* [YOLOv4-CSP](https://github.com/WongKinYiu/ScaledYOLOv4/tree/yolov4-csp) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-csp.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-csp.weights)]
* [YOLOv4](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v3_optimal/yolov4.weights)]
* [YOLOv4-Tiny](https://github.com/AlexeyAB/darknet) [[cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg)] [[weights](https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights)]
* [YOLOv3-SPP](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-spp.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-spp.weights)]
* [YOLOv3](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg)] [[weights](https://pjreddie.com/media/files/yolov3.weights)]
* [YOLOv3-Tiny-PRN](https://github.com/WongKinYiu/PartialResidualNetworks) [[cfg](https://raw.githubusercontent.com/WongKinYiu/PartialResidualNetworks/master/cfg/yolov3-tiny-prn.cfg)] [[weights](https://github.com/WongKinYiu/PartialResidualNetworks/raw/master/model/yolov3-tiny-prn.weights)]
* [YOLOv3-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov3-tiny.weights)]
* [YOLOv3-Lite](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Lite/COCO/MobileNetV2-YOLOv3-Lite-coco.weights)]
* [YOLOv3-Nano](https://github.com/dog-qiuqiu/MobileNet-Yolo) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/MobileNet-Yolo/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.cfg)] [[weights](https://github.com/dog-qiuqiu/MobileNet-Yolo/raw/master/MobileNetV2-YOLOv3-Nano/COCO/MobileNetV2-YOLOv3-Nano-coco.weights)]
* [YOLO-Fastest 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1-xl.weights)]
* [YOLO-Fastest-XL 1.1](https://github.com/dog-qiuqiu/Yolo-Fastest) [[cfg](https://raw.githubusercontent.com/dog-qiuqiu/Yolo-Fastest/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.cfg)] [[weights](https://github.com/dog-qiuqiu/Yolo-Fastest/raw/master/ModelZoo/yolo-fastest-1.1_coco/yolo-fastest-1.1.weights)]
* [YOLOv2](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2.cfg)] [[weights](https://pjreddie.com/media/files/yolov2.weights)]
* [YOLOv2-Tiny](https://github.com/pjreddie/darknet) [[cfg](https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov2-tiny.cfg)] [[weights](https://pjreddie.com/media/files/yolov2-tiny.weights)]
##
### dGPU installation
To install the DeepStream on dGPU (x86 platform), without docker, we need to do some steps to prepare the computer.
<details><summary>Open</summary>
#### 1. Disable Secure Boot in BIOS
<details><summary>If you are using a laptop with newer Intel/AMD processors, please update the kernel to newer version.</summary>
```
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100_5.11.0-051100.202102142330_all.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-headers-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-image-unsigned-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
wget https://kernel.ubuntu.com/~kernel-ppa/mainline/v5.11/amd64/linux-modules-5.11.0-051100-generic_5.11.0-051100.202102142330_amd64.deb
sudo dpkg -i *.deb
sudo reboot
```
</details>
#### 2. Install dependencies
```
sudo apt-get install gcc make git libtool autoconf autogen pkg-config cmake
sudo apt-get install python3 python3-dev python3-pip
sudo apt install libssl1.0.0 libgstreamer1.0-0 gstreamer1.0-tools gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav libgstrtspserver-1.0-0 libjansson4
sudo apt-get install linux-headers-$(uname -r)
```
**NOTE**: Install DKMS if you are using the default Ubuntu kernel
```
sudo apt-get install dkms
```
**NOTE**: Purge all NVIDIA driver, CUDA, etc.
#### 3. Disable Nouveau
```
sudo nano /etc/modprobe.d/blacklist-nouveau.conf
```
* Add
```
blacklist nouveau
options nouveau modeset=0
```
* Run
```
sudo update-initramfs -u
```
#### 4. Reboot the computer
```
sudo reboot
```
#### 5. Download and install NVIDIA Driver without xconfig
```
wget https://us.download.nvidia.com/tesla/470.82.01/NVIDIA-Linux-x86_64-470.82.01.run
sudo sh NVIDIA-Linux-x86_64-470.82.01.run
```
**NOTE**: If you are using default Ubuntu kernel, enable the DKMS during the installation. Else, you can skip this driver installation and install the NVIDIA driver from CUDA runfile (next step).
#### 6. Download and install CUDA 11.4.3 without NVIDIA Driver
```
wget https://developer.download.nvidia.com/compute/cuda/11.4.3/local_installers/cuda_11.4.3_470.82.01_linux.run
sudo sh cuda_11.4.3_470.82.01_linux.run
```
* Export environment variables
```
nano ~/.bashrc
```
* Add
```
export PATH=/usr/local/cuda-11.4/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
```
* Run
```
source ~/.bashrc
sudo ldconfig
```
**NOTE**: If you are using a laptop with NVIDIA Optimius, run
```
sudo apt-get install nvidia-prime
sudo prime-select nvidia
```
#### 7. Download from [NVIDIA website](https://developer.nvidia.com/nvidia-tensorrt-8x-download) and install the TensorRT 8.0 GA (8.0.1)
```
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda-repo.list
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt-key add 7fa2af80.pub
sudo apt-get update
sudo dpkg -i nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626_1-1_amd64.deb
sudo apt-key add /var/nv-tensorrt-repo-ubuntu1804-cuda11.3-trt8.0.1.6-ga-20210626/7fa2af80.pub
sudo apt-get update
sudo apt-get install libnvinfer8=8.0.1-1+cuda11.3 libnvinfer-plugin8=8.0.1-1+cuda11.3 libnvparsers8=8.0.1-1+cuda11.3 libnvonnxparsers8=8.0.1-1+cuda11.3 libnvinfer-bin=8.0.1-1+cuda11.3 libnvinfer-dev=8.0.1-1+cuda11.3 libnvinfer-plugin-dev=8.0.1-1+cuda11.3 libnvparsers-dev=8.0.1-1+cuda11.3 libnvonnxparsers-dev=8.0.1-1+cuda11.3 libnvinfer-samples=8.0.1-1+cuda11.3 libnvinfer-doc=8.0.1-1+cuda11.3
```
#### 8. Download from [NVIDIA website](https://developer.nvidia.com/deepstream-sdk) and install the DeepStream SDK 6.0
```
sudo apt-get install ./deepstream-6.0_6.0.0-1_amd64.deb
rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
```
#### 9. Reboot the computer
```
sudo reboot
```
</details>
##
### Basic usage
#### 1. Download the repo
```
git clone https://github.com/marcoslucianops/DeepStream-Yolo.git
cd DeepStream-Yolo/native
cd DeepStream-Yolo
```
Download cfg and weights files from your model and move to DeepStream-Yolo/native folder
#### 2. Download cfg and weights files from your model and move to DeepStream-Yolo folder
Compile
#### 3. Compile
* x86 platform
```
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
```
* Jetson platform
```
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
```
Edit config_infer_primary.txt for your model (example for YOLOv4)
#### 4. Edit config_infer_primary.txt for your model (example for YOLOv4)
```
[property]
...
@@ -103,12 +254,14 @@ num-detected-classes=80
pre-cluster-threshold=0.25
```
Run
#### 5. Run
```
deepstream-app -c deepstream_app_config.txt
```
If you want to use YOLOv2 or YOLOv2-Tiny models, change, before run, deepstream_app_config.txt
**NOTE**: If you want to use YOLOv2 or YOLOv2-Tiny models, change the deepstream_app_config.txt file before run it
```
[primary-gie]
enable=1
@@ -118,53 +271,63 @@ nvbuf-memory-type=0
config-file=config_infer_primary_yoloV2.txt
```
Note: config_infer_primary.txt uses cluster-mode=4 and NMS = 0.45 (via code) when beta_nms isn't available (when beta_nms is available, NMS = beta_nms), while config_infer_primary_yoloV2.txt uses cluster-mode=2 and nms-iou-threshold=0.45 to set NMS.
**NOTE**: The config_infer_primary.txt file uses cluster-mode=4 and NMS = 0.45 (via code) when beta_nms isn't available (when beta_nms is available, NMS = beta_nms), while the config_infer_primary_yoloV2.txt file uses cluster-mode=2 and nms-iou-threshold=0.45 to set NMS.
##
### INT8 calibration
Install OpenCV
#### 1. Install OpenCV
```
sudo apt-get install libopencv-dev
```
Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
#### 2. Compile/recompile the nvdsinfer_custom_impl_Yolo lib with OpenCV support
* x86 platform
```
cd DeepStream-Yolo/native
CUDA_VER=11.1 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
cd DeepStream-Yolo
CUDA_VER=11.4 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
```
* Jetson platform
```
cd DeepStream-Yolo/native
cd DeepStream-Yolo
CUDA_VER=10.2 OPENCV=1 make -C nvdsinfer_custom_impl_Yolo
```
For COCO dataset, download the [val2017](https://drive.google.com/file/d/1gbvfn7mcsGDRZ_luJwtITL-ru2kK99aK/view?usp=sharing), extract, and move to DeepStream-Yolo/native folder
#### 3. For COCO dataset, download the [val2017](https://drive.google.com/file/d/1gbvfn7mcsGDRZ_luJwtITL-ru2kK99aK/view?usp=sharing), extract, and move to DeepStream-Yolo folder
##### Select 1000 random images from COCO dataset to run calibration
Select 1000 random images from COCO dataset to run calibration
```
mkdir calibration
```
```
for jpg in $(ls -1 val2017/*.jpg | sort -R | head -1000); do \
cp val2017/${jpg} calibration/; \
cp ${jpg} calibration/; \
done
```
Create the calibration.txt file with all selected images
##### Create the calibration.txt file with all selected images
```
realpath calibration/*jpg > calibration.txt
```
Set environment variables
##### Set environment variables
```
export INT8_CALIB_IMG_PATH=calibration.txt
export INT8_CALIB_BATCH_SIZE=1
```
Change config_infer_primary.txt file
##### Change config_infer_primary.txt file
```
...
model-engine-file=model_b1_gpu0_fp32.engine
@@ -173,7 +336,9 @@ model-engine-file=model_b1_gpu0_fp32.engine
network-mode=0
...
```
To
* To
```
...
model-engine-file=model_b1_gpu0_int8.engine
@@ -183,70 +348,13 @@ network-mode=1
...
```
Run
##### Run
```
deepstream-app -c deepstream_app_config.txt
```
Note: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time. The calibration isn't available for YOLOv5 models.
##
### mAP/FPS comparison between models
<details><summary>Open</summary>
```
valid = val2017 (COCO)
NMS = 0.45 (changed to beta_nms when used in Darknet cfg file) / 0.6 (YOLOv5 models)
pre-cluster-threshold = 0.001 (mAP eval) / 0.25 (FPS measurement)
batch-size = 1
FPS measurement display width = 1920
FPS measurement display height = 1080
NOTE: Used NVIDIA GTX 1050 (4GB Mobile) for evaluate. Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1) and YOLOv5 models. For INT8 calibration, was used 1000 random images from val2017 (COCO) and INT8_CALIB_BATCH_SIZE=1.
```
| TensorRT | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(with display) | FPS<br />(without display) |
|:---------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:-----------------------:|:--------------------------:|
| YOLOv5x 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5l 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5m 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5s 5.0 | FP32 | 640 | 0. | 0. | 0. | . | . |
| YOLOv5s 5.0 | FP32 | 416 | 0. | 0. | 0. | . | . |
| YOLOv4x-MISH | FP32 | 640 | 0.461 | 0.649 | 0.499 | . | . |
| YOLOv4x-MISH | **INT8** | 640 | 0.443 | 0.629 | 0.479 | . | . |
| YOLOv4x-MISH | FP32 | 608 | 0.461 | 0.650 | 0.496 | . | . |
| YOLOv4-CSP | FP32 | 640 | 0.443 | 0.632 | 0.477 | . | . |
| YOLOv4-CSP | FP32 | 608 | 0.443 | 0.632 | 0.477 | . | . |
| YOLOv4-CSP | FP32 | 512 | 0.437 | 0.625 | 0.471 | . | . |
| YOLOv4-CSP | **INT8** | 512 | 0.414 | 0.601 | 0.447 | . | . |
| YOLOv4 | FP32 | 640 | 0.492 | 0.729 | 0.547 | . | . |
| YOLOv4 | FP32 | 608 | 0.499 | 0.739 | 0.551 | . | . |
| YOLOv4 | **INT8** | 608 | 0.483 | 0.728 | 0.534 | . | . |
| YOLOv4 | FP32 | 512 | 0.492 | 0.730 | 0.542 | . | . |
| YOLOv4 | FP32 | 416 | 0.468 | 0.702 | 0.507 | . | . |
| YOLOv3-SPP | FP32 | 608 | 0.412 | 0.687 | 0.434 | . | . |
| YOLOv3 | FP32 | 608 | 0.378 | 0.674 | 0.389 | . | . |
| YOLOv3 | **INT8** | 608 | 0.381 | 0.677 | 0.388 | . | . |
| YOLOv3 | FP32 | 416 | 0.373 | 0.669 | 0.379 | . | . |
| YOLOv2 | FP32 | 608 | 0.211 | 0.365 | 0.220 | . | . |
| YOLOv2 | FP32 | 416 | 0.207 | 0.362 | 0.211 | . | . |
| YOLOv4-Tiny | FP32 | 416 | 0.216 | 0.403 | 0.207 | . | . |
| YOLOv4-Tiny | **INT8** | 416 | 0.203 | 0.385 | 0.192 | . | . |
| YOLOv3-Tiny-PRN | FP32 | 416 | 0.168 | 0.381 | 0.126 | . | . |
| YOLOv3-Tiny-PRN | **INT8** | 416 | 0.155 | 0.358 | 0.113 | . | . |
| YOLOv3-Tiny | FP32 | 416 | 0.096 | 0.203 | 0.080 | . | . |
| YOLOv2-Tiny | FP32 | 416 | 0.084 | 0.194 | 0.062 | . | . |
| YOLOv3-Lite | FP32 | 416 | 0.169 | 0.356 | 0.137 | . | . |
| YOLOv3-Lite | FP32 | 320 | 0.158 | 0.328 | 0.132 | . | . |
| YOLOv3-Nano | FP32 | 416 | 0.128 | 0.278 | 0.099 | . | . |
| YOLOv3-Nano | FP32 | 320 | 0.122 | 0.260 | 0.099 | . | . |
| YOLO-Fastest-XL | FP32 | 416 | 0.160 | 0.342 | 0.130 | . | . |
| YOLO-Fastest-XL | FP32 | 320 | 0.158 | 0.329 | 0.135 | . | . |
| YOLO-Fastest | FP32 | 416 | 0.101 | 0.230 | 0.072 | . | . |
| YOLO-Fastest | FP32 | 320 | 0.102 | 0.232 | 0.073 | . | . |
</details>
**NOTE**: NVIDIA recommends at least 500 images to get a good accuracy. In this example I used 1000 images to get better accuracy (more images = more accuracy). Higher INT8_CALIB_BATCH_SIZE values will increase the accuracy and calibration speed. Set it according to you GPU memory. This process can take a long time.
##
@@ -254,15 +362,11 @@ NOTE: Used NVIDIA GTX 1050 (4GB Mobile) for evaluate. Used maintain-aspect-ratio
You can get metadata from deepstream in Python and C++. For C++, you need edit deepstream-app or deepstream-test code. For Python your need install and edit [deepstream_python_apps](https://github.com/NVIDIA-AI-IOT/deepstream_python_apps).
You need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/Meta/_NvDsObjectMeta.html)), NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/Meta/_NvDsFrameMeta.html)) and NvOSD_RectParams ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsOSD/NvOSD_RectParams.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/OSD/Data_Structures/_NvOSD_FrameRectParams.html)) to get label, position, etc. of bboxs.
You need manipulate NvDsObjectMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsObjectMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsObjectMeta.html)), NvDsFrameMeta ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvDsMeta/NvDsFrameMeta.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvDsFrameMeta.html)) and NvOSD_RectParams ([Python](https://docs.nvidia.com/metropolis/deepstream/python-api/PYTHON_API/NvOSD/NvOSD_RectParams.html)/[C++](https://docs.nvidia.com/metropolis/deepstream/sdk-api/struct__NvOSD__RectParams.html)) to get label, position, etc. of bboxes.
In C++ deepstream-app application, your code need be in analytics_done_buf_prob function.
In C++/Python deepstream-test application, your code need be in osd_sink_pad_buffer_probe/tiler_src_pad_buffer_probe function.
Python is slightly slower than C (about 5-10%).
##
This code is open-source. You can use as you want. :)
My projects: https://www.youtube.com/MarcosLucianoTV
My projects: https://www.youtube.com/MarcosLucianoTV (new videos and tutorials comming soon)