Fix functions

Fixed function for NVIDIA Jetson Nano
This commit is contained in:
Marcos Luciano
2020-12-21 23:34:49 -03:00
parent 6d541b58e7
commit cb99cf3254
4 changed files with 101 additions and 77 deletions

View File

@@ -237,7 +237,7 @@ NvDsInferStatus Yolo::buildYoloNetwork(
= new YoloLayer(m_OutputTensors.at(outputTensorCount).numBBoxes, = new YoloLayer(m_OutputTensors.at(outputTensorCount).numBBoxes,
m_OutputTensors.at(outputTensorCount).numClasses, m_OutputTensors.at(outputTensorCount).numClasses,
m_OutputTensors.at(outputTensorCount).gridSize, m_OutputTensors.at(outputTensorCount).gridSize,
'y', new_coords, scale_x_y, beta_nms, 1, new_coords, scale_x_y, beta_nms,
curYoloTensor.anchors, curYoloTensor.anchors,
m_OutputMasks); m_OutputMasks);
assert(yoloPlugin != nullptr); assert(yoloPlugin != nullptr);
@@ -274,7 +274,7 @@ NvDsInferStatus Yolo::buildYoloNetwork(
= new YoloLayer(curRegionTensor.numBBoxes, = new YoloLayer(curRegionTensor.numBBoxes,
curRegionTensor.numClasses, curRegionTensor.numClasses,
curRegionTensor.gridSize, curRegionTensor.gridSize,
'r', 0, 1.0, 0, 0, 0, 1.0, 0,
curRegionTensor.anchors, curRegionTensor.anchors,
mask); mask);
assert(regionPlugin != nullptr); assert(regionPlugin != nullptr);

View File

@@ -21,7 +21,7 @@
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); } inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
__global__ void gpuYoloLayer(const float* input, float* output, const uint gridSize, const uint numOutputClasses, __global__ void gpuYoloLayer(const float* input, float* output, const uint gridSize, const uint numOutputClasses,
const uint numBBoxes, const uint new_coords, const float scale_x_y, char type) const uint numBBoxes, const uint new_coords, const float scale_x_y)
{ {
uint x_id = blockIdx.x * blockDim.x + threadIdx.x; uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y; uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
@@ -38,53 +38,29 @@ __global__ void gpuYoloLayer(const float* input, float* output, const uint gridS
float alpha = scale_x_y; float alpha = scale_x_y;
float beta = -0.5 * (scale_x_y - 1); float beta = -0.5 * (scale_x_y - 1);
if (type == 'y') { if (new_coords == 1) {
if (new_coords == 1) { output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta;
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta; = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
= pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2); = pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
= pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2); = pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]; = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
for (uint i = 0; i < numOutputClasses; ++i) for (uint i = 0; i < numOutputClasses; ++i)
{ {
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]; = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
}
}
else {
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) * alpha + beta;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
for (uint i = 0; i < numOutputClasses; ++i)
{
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]);
}
} }
} }
else if (type == 'r') { else {
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta; = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) * alpha + beta;
@@ -100,43 +76,91 @@ __global__ void gpuYoloLayer(const float* input, float* output, const uint gridS
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)] output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]); = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
float temp = 1.0; for (uint i = 0; i < numOutputClasses; ++i)
int i; {
float sum = 0; output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]
float largest = -INFINITY; = sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]);
for(i = 0; i < numOutputClasses; ++i){
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
largest = (val>largest) ? val : largest;
}
for(i = 0; i < numOutputClasses; ++i){
float e = exp(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
sum += e;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
}
for(i = 0; i < numOutputClasses; ++i){
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
} }
} }
} }
__global__ void gpuRegionLayer(const float* input, float* output, const uint gridSize, const uint numOutputClasses,
const uint numBBoxes)
{
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
uint z_id = blockIdx.z * blockDim.z + threadIdx.z;
if ((x_id >= gridSize) || (y_id >= gridSize) || (z_id >= numBBoxes))
{
return;
}
const int numGridCells = gridSize * gridSize;
const int bbindex = y_id * gridSize + x_id;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]);
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
float temp = 1.0;
int i;
float sum = 0;
float largest = -INFINITY;
for(i = 0; i < numOutputClasses; ++i){
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
largest = (val>largest) ? val : largest;
}
for(i = 0; i < numOutputClasses; ++i){
float e = exp(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
sum += e;
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
}
for(i = 0; i < numOutputClasses; ++i){
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
}
}
cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint& gridSize, cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint& gridSize,
const uint& numOutputClasses, const uint& numBBoxes, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t outputSize, cudaStream_t stream, const uint new_coords, const float scale_x_y, char type); uint64_t outputSize, cudaStream_t stream, const uint modelCoords, const float modelScale, const uint modelType);
cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint& gridSize, cudaError_t cudaYoloLayer(const void* input, void* output, const uint& batchSize, const uint& gridSize,
const uint& numOutputClasses, const uint& numBBoxes, const uint& numOutputClasses, const uint& numBBoxes,
uint64_t outputSize, cudaStream_t stream, const uint new_coords, const float scale_x_y, char type) uint64_t outputSize, cudaStream_t stream, const uint modelCoords, const float modelScale, const uint modelType)
{ {
dim3 threads_per_block(16, 16, 4); dim3 threads_per_block(16, 16, 4);
dim3 number_of_blocks((gridSize / threads_per_block.x) + 1, dim3 number_of_blocks((gridSize / threads_per_block.x) + 1,
(gridSize / threads_per_block.y) + 1, (gridSize / threads_per_block.y) + 1,
(numBBoxes / threads_per_block.z) + 1); (numBBoxes / threads_per_block.z) + 1);
for (unsigned int batch = 0; batch < batchSize; ++batch) if (modelType == 1) {
{ for (unsigned int batch = 0; batch < batchSize; ++batch)
gpuYoloLayer<<<number_of_blocks, threads_per_block, 0, stream>>>( {
reinterpret_cast<const float*>(input) + (batch * outputSize), gpuYoloLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<float*>(output) + (batch * outputSize), gridSize, numOutputClasses, reinterpret_cast<const float*>(input) + (batch * outputSize),
numBBoxes, new_coords, scale_x_y, type); reinterpret_cast<float*>(output) + (batch * outputSize), gridSize, numOutputClasses,
numBBoxes, modelCoords, modelScale);
}
}
else if (modelType == 0) {
for (unsigned int batch = 0; batch < batchSize; ++batch)
{
gpuRegionLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
reinterpret_cast<const float*>(input) + (batch * outputSize),
reinterpret_cast<float*>(output) + (batch * outputSize), gridSize, numOutputClasses,
numBBoxes);
}
} }
return cudaGetLastError(); return cudaGetLastError();
} }

View File

@@ -53,7 +53,7 @@ void read(const char*& buffer, T& val)
cudaError_t cudaYoloLayer ( cudaError_t cudaYoloLayer (
const void* input, void* output, const uint& batchSize, const void* input, void* output, const uint& batchSize,
const uint& gridSize, const uint& numOutputClasses, const uint& gridSize, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const uint new_coords, const float scale_x_y, char type); const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const uint modelCoords, const float modelScale, const uint modelType);
YoloLayer::YoloLayer (const void* data, size_t length) YoloLayer::YoloLayer (const void* data, size_t length)
{ {
@@ -63,7 +63,7 @@ YoloLayer::YoloLayer (const void* data, size_t length)
read(d, m_GridSize); read(d, m_GridSize);
read(d, m_OutputSize); read(d, m_OutputSize);
read(d, m_Type); read(d, m_type);
read(d, m_new_coords); read(d, m_new_coords);
read(d, m_scale_x_y); read(d, m_scale_x_y);
read(d, m_beta_nms); read(d, m_beta_nms);
@@ -94,11 +94,11 @@ YoloLayer::YoloLayer (const void* data, size_t length)
}; };
YoloLayer::YoloLayer ( YoloLayer::YoloLayer (
const uint& numBoxes, const uint& numClasses, const uint& gridSize, char type, int new_coords, float scale_x_y, float beta_nms, std::vector<float> anchors, std::vector<std::vector<int>> mask) : const uint& numBoxes, const uint& numClasses, const uint& gridSize, const uint model_type, const uint new_coords, const float scale_x_y, const float beta_nms, const std::vector<float> anchors, std::vector<std::vector<int>> mask) :
m_NumBoxes(numBoxes), m_NumBoxes(numBoxes),
m_NumClasses(numClasses), m_NumClasses(numClasses),
m_GridSize(gridSize), m_GridSize(gridSize),
m_Type(type), m_type(model_type),
m_new_coords(new_coords), m_new_coords(new_coords),
m_scale_x_y(scale_x_y), m_scale_x_y(scale_x_y),
m_beta_nms(beta_nms), m_beta_nms(beta_nms),
@@ -143,7 +143,7 @@ int YoloLayer::enqueue(
{ {
CHECK(cudaYoloLayer( CHECK(cudaYoloLayer(
inputs[0], outputs[0], batchSize, m_GridSize, m_NumClasses, m_NumBoxes, inputs[0], outputs[0], batchSize, m_GridSize, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_new_coords, m_scale_x_y, m_Type)); m_OutputSize, stream, m_new_coords, m_scale_x_y, m_type));
return 0; return 0;
} }
@@ -161,7 +161,7 @@ size_t YoloLayer::getSerializationSize() const
} }
} }
return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSize) + sizeof(m_OutputSize) + sizeof(m_Type) return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSize) + sizeof(m_OutputSize) + sizeof(m_type)
+ sizeof(m_new_coords) + sizeof(m_scale_x_y) + sizeof(m_beta_nms) + anchorsSum * sizeof(float) + maskSum * sizeof(int); + sizeof(m_new_coords) + sizeof(m_scale_x_y) + sizeof(m_beta_nms) + anchorsSum * sizeof(float) + maskSum * sizeof(int);
} }
@@ -173,7 +173,7 @@ void YoloLayer::serialize(void* buffer) const
write(d, m_GridSize); write(d, m_GridSize);
write(d, m_OutputSize); write(d, m_OutputSize);
write(d, m_Type); write(d, m_type);
write(d, m_new_coords); write(d, m_new_coords);
write(d, m_scale_x_y); write(d, m_scale_x_y);
write(d, m_beta_nms); write(d, m_beta_nms);
@@ -199,7 +199,7 @@ void YoloLayer::serialize(void* buffer) const
nvinfer1::IPluginV2* YoloLayer::clone() const nvinfer1::IPluginV2* YoloLayer::clone() const
{ {
return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSize, m_Type, m_new_coords, m_scale_x_y, m_beta_nms, m_Anchors, m_Mask); return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSize, m_type, m_new_coords, m_scale_x_y, m_beta_nms, m_Anchors, m_Mask);
} }
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator); REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);

View File

@@ -57,8 +57,8 @@ class YoloLayer : public nvinfer1::IPluginV2
public: public:
YoloLayer (const void* data, size_t length); YoloLayer (const void* data, size_t length);
YoloLayer (const uint& numBoxes, const uint& numClasses, const uint& gridSize, YoloLayer (const uint& numBoxes, const uint& numClasses, const uint& gridSize,
char type, int new_coords, float scale_x_y, float beta_nms, const uint model_type, const uint new_coords, const float scale_x_y, const float beta_nms,
std::vector<float> anchors, std::vector<std::vector<int>> mask); const std::vector<float> anchors, const std::vector<std::vector<int>> mask);
const char* getPluginType () const override { return YOLOLAYER_PLUGIN_NAME; } const char* getPluginType () const override { return YOLOLAYER_PLUGIN_NAME; }
const char* getPluginVersion () const override { return YOLOLAYER_PLUGIN_VERSION; } const char* getPluginVersion () const override { return YOLOLAYER_PLUGIN_VERSION; }
int getNbOutputs () const override { return 1; } int getNbOutputs () const override { return 1; }
@@ -100,7 +100,7 @@ private:
uint64_t m_OutputSize {0}; uint64_t m_OutputSize {0};
std::string m_Namespace {""}; std::string m_Namespace {""};
char m_Type; uint m_type {0};
uint m_new_coords {0}; uint m_new_coords {0};
float m_scale_x_y {0}; float m_scale_x_y {0};
float m_beta_nms {0}; float m_beta_nms {0};