New optimized NMS

This commit is contained in:
Marcos Luciano
2022-08-15 02:48:23 -03:00
parent 8ad99d3f8d
commit c8a4a49f16
24 changed files with 206 additions and 394 deletions

View File

@@ -48,37 +48,33 @@ namespace {
}
cudaError_t cudaYoloLayer_e(
const void* cls, const void* reg, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight,
const uint& numOutputClasses, cudaStream_t stream);
const void* cls, const void* reg, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& numOutputClasses, cudaStream_t stream);
cudaError_t cudaYoloLayer_r(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer_nc(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaRegionLayer(
const void* input, void* softmax, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const void* anchors, cudaStream_t stream);
cudaError_t sortDetections(
void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* bboxData, void* scoreData, void* countData,
const uint& batchSize, uint64_t& outputSize, uint& topK, const uint& numOutputClasses, cudaStream_t stream);
const void* input, void* softmax, void* num_detections, void* detection_boxes, void* detection_scores,
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const void* anchors, cudaStream_t stream);
YoloLayer::YoloLayer (const void* data, size_t length)
{
@@ -90,7 +86,6 @@ YoloLayer::YoloLayer (const void* data, size_t length)
read(d, m_NewCoords);
read(d, m_OutputSize);
read(d, m_Type);
read(d, m_TopK);
read(d, m_ScoreThreshold);
if (m_Type != 3) {
@@ -130,7 +125,7 @@ YoloLayer::YoloLayer (const void* data, size_t length)
YoloLayer::YoloLayer(
const uint& netWidth, const uint& netHeight, const uint& numClasses, const uint& newCoords,
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize, const uint& modelType, const uint& topK,
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize, const uint& modelType,
const float& scoreThreshold) :
m_NetWidth(netWidth),
m_NetHeight(netHeight),
@@ -139,7 +134,6 @@ YoloLayer::YoloLayer(
m_YoloTensors(yoloTensors),
m_OutputSize(outputSize),
m_Type(modelType),
m_TopK(topK),
m_ScoreThreshold(scoreThreshold)
{
assert(m_NetWidth > 0);
@@ -152,11 +146,14 @@ nvinfer1::Dims
YoloLayer::getOutputDimensions(
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
{
assert(index < 3);
assert(index <= 4);
if (index == 0) {
return nvinfer1::Dims{3, {static_cast<int>(m_TopK), 1, 4}};
return nvinfer1::Dims{1, {1}};
}
return nvinfer1::Dims{2, {static_cast<int>(m_TopK), static_cast<int>(m_NumClasses)}};
else if (index == 1) {
return nvinfer1::Dims{2, {static_cast<int>(m_OutputSize), 4}};
}
return nvinfer1::Dims{1, {static_cast<int>(m_OutputSize)}};
}
bool YoloLayer::supportsFormat (
@@ -180,37 +177,21 @@ int32_t YoloLayer::enqueue (
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
void* bboxData = outputs[0];
void* scoreData = outputs[1];
void* num_detections = outputs[0];
void* detection_boxes = outputs[1];
void* detection_scores = outputs[2];
void* detection_classes = outputs[3];
CUDA_CHECK(cudaMemsetAsync((float*)bboxData, 0, sizeof(float) * m_TopK * 4 * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)scoreData, 0, sizeof(float) * m_TopK * m_NumClasses * batchSize, stream));
void* countData;
CUDA_CHECK(cudaMalloc(&countData, sizeof(int) * batchSize));
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
void* d_indexes;
CUDA_CHECK(cudaMalloc(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((int*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
void* d_scores;
CUDA_CHECK(cudaMalloc(&d_scores, sizeof(float) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
void* d_boxes;
CUDA_CHECK(cudaMalloc(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
void* d_classes;
CUDA_CHECK(cudaMalloc(&d_classes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((int*)num_detections, 0, sizeof(int) * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)detection_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)detection_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((int*)detection_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
if (m_Type == 3)
{
CUDA_CHECK(cudaYoloLayer_e(
inputs[0], inputs[1], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
inputs[0], inputs[1], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
}
else
{
@@ -243,22 +224,22 @@ int32_t YoloLayer::enqueue (
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CUDA_CHECK(cudaYoloLayer_r(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, 2.0, v_anchors,
v_mask, stream));
inputs[i], num_detections, detection_boxes, detection_scores, detection_classes, batchSize, inputSize,
m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes,
2.0, v_anchors, v_mask, stream));
}
else if (m_Type == 1) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
v_anchors, v_mask, stream));
inputs[i], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
else {
CUDA_CHECK(cudaYoloLayer(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
v_anchors, v_mask, stream));
inputs[i], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
}
else {
@@ -267,9 +248,9 @@ int32_t YoloLayer::enqueue (
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaRegionLayer(
inputs[i], softmax, d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors,
stream));
inputs[i], softmax, num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses,
numBBoxes, v_anchors, stream));
CUDA_CHECK(cudaFree(softmax));
}
@@ -283,16 +264,6 @@ int32_t YoloLayer::enqueue (
}
}
CUDA_CHECK(sortDetections(
d_indexes, d_scores, d_boxes, d_classes, bboxData, scoreData, countData, batchSize, m_OutputSize, m_TopK,
m_NumClasses, stream));
CUDA_CHECK(cudaFree(countData));
CUDA_CHECK(cudaFree(d_indexes));
CUDA_CHECK(cudaFree(d_scores));
CUDA_CHECK(cudaFree(d_boxes));
CUDA_CHECK(cudaFree(d_classes));
return 0;
}
@@ -306,7 +277,6 @@ size_t YoloLayer::getSerializationSize() const noexcept
totalSize += sizeof(m_NewCoords);
totalSize += sizeof(m_OutputSize);
totalSize += sizeof(m_Type);
totalSize += sizeof(m_TopK);
totalSize += sizeof(m_ScoreThreshold);
if (m_Type != 3) {
@@ -338,7 +308,6 @@ void YoloLayer::serialize(void* buffer) const noexcept
write(d, m_NewCoords);
write(d, m_OutputSize);
write(d, m_Type);
write(d, m_TopK);
write(d, m_ScoreThreshold);
if (m_Type != 3) {
@@ -372,8 +341,7 @@ void YoloLayer::serialize(void* buffer) const noexcept
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
{
return new YoloLayer (
m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize, m_Type, m_TopK,
m_ScoreThreshold);
m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize, m_Type, m_ScoreThreshold);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);