New optimized NMS
This commit is contained in:
@@ -48,37 +48,33 @@ namespace {
|
||||
}
|
||||
|
||||
cudaError_t cudaYoloLayer_e(
|
||||
const void* cls, const void* reg, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight,
|
||||
const uint& numOutputClasses, cudaStream_t stream);
|
||||
const void* cls, const void* reg, void* num_detections, void* detection_boxes, void* detection_scores,
|
||||
void* detection_classes, const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& numOutputClasses, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer_r(
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer(
|
||||
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const void* input, void* num_detections, void* detection_boxes, void* detection_scores, void* detection_classes,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaRegionLayer(
|
||||
const void* input, void* softmax, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
|
||||
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const void* anchors, cudaStream_t stream);
|
||||
|
||||
cudaError_t sortDetections(
|
||||
void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* bboxData, void* scoreData, void* countData,
|
||||
const uint& batchSize, uint64_t& outputSize, uint& topK, const uint& numOutputClasses, cudaStream_t stream);
|
||||
const void* input, void* softmax, void* num_detections, void* detection_boxes, void* detection_scores,
|
||||
void* detection_classes, const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold,
|
||||
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
||||
const uint& numBBoxes, const void* anchors, cudaStream_t stream);
|
||||
|
||||
YoloLayer::YoloLayer (const void* data, size_t length)
|
||||
{
|
||||
@@ -90,7 +86,6 @@ YoloLayer::YoloLayer (const void* data, size_t length)
|
||||
read(d, m_NewCoords);
|
||||
read(d, m_OutputSize);
|
||||
read(d, m_Type);
|
||||
read(d, m_TopK);
|
||||
read(d, m_ScoreThreshold);
|
||||
|
||||
if (m_Type != 3) {
|
||||
@@ -130,7 +125,7 @@ YoloLayer::YoloLayer (const void* data, size_t length)
|
||||
|
||||
YoloLayer::YoloLayer(
|
||||
const uint& netWidth, const uint& netHeight, const uint& numClasses, const uint& newCoords,
|
||||
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize, const uint& modelType, const uint& topK,
|
||||
const std::vector<TensorInfo>& yoloTensors, const uint64_t& outputSize, const uint& modelType,
|
||||
const float& scoreThreshold) :
|
||||
m_NetWidth(netWidth),
|
||||
m_NetHeight(netHeight),
|
||||
@@ -139,7 +134,6 @@ YoloLayer::YoloLayer(
|
||||
m_YoloTensors(yoloTensors),
|
||||
m_OutputSize(outputSize),
|
||||
m_Type(modelType),
|
||||
m_TopK(topK),
|
||||
m_ScoreThreshold(scoreThreshold)
|
||||
{
|
||||
assert(m_NetWidth > 0);
|
||||
@@ -152,11 +146,14 @@ nvinfer1::Dims
|
||||
YoloLayer::getOutputDimensions(
|
||||
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
|
||||
{
|
||||
assert(index < 3);
|
||||
assert(index <= 4);
|
||||
if (index == 0) {
|
||||
return nvinfer1::Dims{3, {static_cast<int>(m_TopK), 1, 4}};
|
||||
return nvinfer1::Dims{1, {1}};
|
||||
}
|
||||
return nvinfer1::Dims{2, {static_cast<int>(m_TopK), static_cast<int>(m_NumClasses)}};
|
||||
else if (index == 1) {
|
||||
return nvinfer1::Dims{2, {static_cast<int>(m_OutputSize), 4}};
|
||||
}
|
||||
return nvinfer1::Dims{1, {static_cast<int>(m_OutputSize)}};
|
||||
}
|
||||
|
||||
bool YoloLayer::supportsFormat (
|
||||
@@ -180,37 +177,21 @@ int32_t YoloLayer::enqueue (
|
||||
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
|
||||
cudaStream_t stream) noexcept
|
||||
{
|
||||
void* bboxData = outputs[0];
|
||||
void* scoreData = outputs[1];
|
||||
void* num_detections = outputs[0];
|
||||
void* detection_boxes = outputs[1];
|
||||
void* detection_scores = outputs[2];
|
||||
void* detection_classes = outputs[3];
|
||||
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)bboxData, 0, sizeof(float) * m_TopK * 4 * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)scoreData, 0, sizeof(float) * m_TopK * m_NumClasses * batchSize, stream));
|
||||
|
||||
void* countData;
|
||||
CUDA_CHECK(cudaMalloc(&countData, sizeof(int) * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
|
||||
|
||||
void* d_indexes;
|
||||
CUDA_CHECK(cudaMalloc(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((int*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
|
||||
|
||||
void* d_scores;
|
||||
CUDA_CHECK(cudaMalloc(&d_scores, sizeof(float) * m_OutputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
|
||||
|
||||
void* d_boxes;
|
||||
CUDA_CHECK(cudaMalloc(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
|
||||
|
||||
void* d_classes;
|
||||
CUDA_CHECK(cudaMalloc(&d_classes, sizeof(int) * m_OutputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)d_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((int*)num_detections, 0, sizeof(int) * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)detection_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)detection_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
|
||||
CUDA_CHECK(cudaMemsetAsync((int*)detection_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
|
||||
|
||||
if (m_Type == 3)
|
||||
{
|
||||
CUDA_CHECK(cudaYoloLayer_e(
|
||||
inputs[0], inputs[1], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
|
||||
inputs[0], inputs[1], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
|
||||
m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
|
||||
}
|
||||
else
|
||||
{
|
||||
@@ -243,22 +224,22 @@ int32_t YoloLayer::enqueue (
|
||||
|
||||
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
|
||||
CUDA_CHECK(cudaYoloLayer_r(
|
||||
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, 2.0, v_anchors,
|
||||
v_mask, stream));
|
||||
inputs[i], num_detections, detection_boxes, detection_scores, detection_classes, batchSize, inputSize,
|
||||
m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes,
|
||||
2.0, v_anchors, v_mask, stream));
|
||||
}
|
||||
else if (m_Type == 1) {
|
||||
if (m_NewCoords) {
|
||||
CUDA_CHECK(cudaYoloLayer_nc(
|
||||
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
|
||||
v_anchors, v_mask, stream));
|
||||
inputs[i], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
|
||||
inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
|
||||
m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
|
||||
}
|
||||
else {
|
||||
CUDA_CHECK(cudaYoloLayer(
|
||||
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
|
||||
v_anchors, v_mask, stream));
|
||||
inputs[i], num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
|
||||
inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY,
|
||||
m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
|
||||
}
|
||||
}
|
||||
else {
|
||||
@@ -267,9 +248,9 @@ int32_t YoloLayer::enqueue (
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize));
|
||||
|
||||
CUDA_CHECK(cudaRegionLayer(
|
||||
inputs[i], softmax, d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
|
||||
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors,
|
||||
stream));
|
||||
inputs[i], softmax, num_detections, detection_boxes, detection_scores, detection_classes, batchSize,
|
||||
inputSize, m_OutputSize, m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses,
|
||||
numBBoxes, v_anchors, stream));
|
||||
|
||||
CUDA_CHECK(cudaFree(softmax));
|
||||
}
|
||||
@@ -283,16 +264,6 @@ int32_t YoloLayer::enqueue (
|
||||
}
|
||||
}
|
||||
|
||||
CUDA_CHECK(sortDetections(
|
||||
d_indexes, d_scores, d_boxes, d_classes, bboxData, scoreData, countData, batchSize, m_OutputSize, m_TopK,
|
||||
m_NumClasses, stream));
|
||||
|
||||
CUDA_CHECK(cudaFree(countData));
|
||||
CUDA_CHECK(cudaFree(d_indexes));
|
||||
CUDA_CHECK(cudaFree(d_scores));
|
||||
CUDA_CHECK(cudaFree(d_boxes));
|
||||
CUDA_CHECK(cudaFree(d_classes));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -306,7 +277,6 @@ size_t YoloLayer::getSerializationSize() const noexcept
|
||||
totalSize += sizeof(m_NewCoords);
|
||||
totalSize += sizeof(m_OutputSize);
|
||||
totalSize += sizeof(m_Type);
|
||||
totalSize += sizeof(m_TopK);
|
||||
totalSize += sizeof(m_ScoreThreshold);
|
||||
|
||||
if (m_Type != 3) {
|
||||
@@ -338,7 +308,6 @@ void YoloLayer::serialize(void* buffer) const noexcept
|
||||
write(d, m_NewCoords);
|
||||
write(d, m_OutputSize);
|
||||
write(d, m_Type);
|
||||
write(d, m_TopK);
|
||||
write(d, m_ScoreThreshold);
|
||||
|
||||
if (m_Type != 3) {
|
||||
@@ -372,8 +341,7 @@ void YoloLayer::serialize(void* buffer) const noexcept
|
||||
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
|
||||
{
|
||||
return new YoloLayer (
|
||||
m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize, m_Type, m_TopK,
|
||||
m_ScoreThreshold);
|
||||
m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize, m_Type, m_ScoreThreshold);
|
||||
}
|
||||
|
||||
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);
|
||||
|
||||
Reference in New Issue
Block a user