DeepStream 7.1 + Fixes + New model output format

This commit is contained in:
Marcos Luciano
2024-11-07 11:25:17 -03:00
parent bca9e59d07
commit b451b036b2
75 changed files with 2383 additions and 1113 deletions

145
utils/export_yoloV9.py Normal file
View File

@@ -0,0 +1,145 @@
import os
import onnx
import torch
import torch.nn as nn
import utils.tal.anchor_generator as _m
def _dist2bbox(distance, anchor_points, xywh=False, dim=-1):
lt, rb = torch.split(distance, 2, dim)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
return torch.cat((x1y1, x2y2), dim)
_m.dist2bbox.__code__ = _dist2bbox.__code__
class DeepStreamOutputDual(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x = x[1].transpose(1, 2)
boxes = x[:, :, :4]
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
class DeepStreamOutput(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
x = x.transpose(1, 2)
boxes = x[:, :, :4]
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def yolov9_export(weights, device, inplace=True, fuse=True):
ckpt = torch.load(weights, map_location='cpu')
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()
if not hasattr(ckpt, 'stride'):
ckpt.stride = torch.tensor([32.])
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
ckpt.names = dict(enumerate(ckpt.names))
model = ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()
for m in model.modules():
t = type(m)
if t.__name__ in ('Hardswish', 'LeakyReLU', 'ReLU', 'ReLU6', 'SiLU', 'Detect', 'Model'):
m.inplace = inplace
elif t.__name__ == 'Upsample' and not hasattr(m, 'recompute_scale_factor'):
m.recompute_scale_factor = None
model.eval()
head = 'Detect'
for k, m in model.named_modules():
if m.__class__.__name__ in ('Detect', 'DDetect', 'DualDetect', 'DualDDetect'):
m.inplace = False
m.dynamic = False
m.export = True
head = m.__class__.__name__
return model, head
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print(f'\nStarting: {args.weights}')
print('Opening YOLOv9 model')
device = torch.device('cpu')
model, head = yolov9_export(args.weights, device)
if len(model.names.keys()) > 0:
print('Creating labels.txt file')
with open('labels.txt', 'w', encoding='utf-8') as f:
for name in model.names.values():
f.write(f'{name}\n')
if head in ('Detect', 'DDetect'):
model = nn.Sequential(model, DeepStreamOutput())
else:
model = nn.Sequential(model, DeepStreamOutputDual())
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream YOLOv9 conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
return args
if __name__ == '__main__':
args = parse_args()
main(args)