DeepStream 7.1 + Fixes + New model output format

This commit is contained in:
Marcos Luciano
2024-11-07 11:25:17 -03:00
parent bca9e59d07
commit b451b036b2
75 changed files with 2383 additions and 1113 deletions

View File

@@ -1,34 +1,25 @@
import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
from copy import deepcopy
from ultralytics import RTDETR
from ultralytics.utils.torch_utils import select_device
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
class DeepStreamOutput(nn.Module):
def __init__(self, img_size):
self.img_size = img_size
super().__init__()
self.img_size = img_size
def forward(self, x):
boxes = x[:, :, :4]
boxes[:, :, [0, 2]] *= self.img_size[1]
boxes[:, :, [1, 3]] *= self.img_size[0]
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
classes = classes.float()
return boxes, scores, classes
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
convert_matrix = torch.tensor(
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
)
boxes @= convert_matrix
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def rtdetr_ultralytics_export(weights, device):
@@ -40,74 +31,74 @@ def rtdetr_ultralytics_export(weights, device):
model.float()
model = model.fuse()
for k, m in model.named_modules():
if isinstance(m, (Detect, RTDETRDecoder)):
if m.__class__.__name__ in ('Detect', 'RTDETRDecoder'):
m.dynamic = False
m.export = True
m.format = 'onnx'
elif isinstance(m, C2f):
elif m.__class__.__name__ == 'C2f':
m.forward = m.forward_split
return model
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print('\nStarting: %s' % args.weights)
print(f'\nStarting: {args.weights}')
print('Opening RT-DETR Ultralytics model\n')
print('Opening RT-DETR Ultralytics model')
device = select_device('cpu')
device = torch.device('cpu')
model = rtdetr_ultralytics_export(args.weights, device)
if len(model.names.keys()) > 0:
print('\nCreating labels.txt file')
f = open('labels.txt', 'w')
for name in model.names.values():
f.write(name + '\n')
f.close()
print('Creating labels.txt file')
with open('labels.txt', 'w', encoding='utf-8') as f:
for name in model.names.values():
f.write(f'{name}\n')
img_size = args.size * 2 if len(args.size) == 1 else args.size
model = nn.Sequential(model, DeepStreamOutput(img_size))
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
'output': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxsim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print('Simplifying is not available for this model')
print('Done: %s\n' % onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream RT-DETR Ultralytics conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
@@ -121,4 +112,4 @@ def parse_args():
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))
main(args)