DeepStream 7.1 + Fixes + New model output format

This commit is contained in:
Marcos Luciano
2024-11-07 11:25:17 -03:00
parent bca9e59d07
commit b451b036b2
75 changed files with 2383 additions and 1113 deletions

View File

@@ -1,31 +1,28 @@
import os
import sys
import argparse
import warnings
import onnx
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.core import YAMLConfig
class DeepStreamOutput(nn.Module):
def __init__(self, img_size):
self.img_size = img_size
def __init__(self, img_size, use_focal_loss):
super().__init__()
self.img_size = img_size
self.use_focal_loss = use_focal_loss
def forward(self, x):
boxes = x['pred_boxes']
boxes[:, :, [0, 2]] *= self.img_size[1]
boxes[:, :, [1, 3]] *= self.img_size[0]
scores, classes = torch.max(x['pred_logits'], 2, keepdim=True)
classes = classes.float()
return boxes, scores, classes
def suppress_warnings():
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
convert_matrix = torch.tensor(
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
)
boxes @= convert_matrix
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
scores = F.sigmoid(x['pred_logits']) if self.use_focal_loss else F.softmax(x['pred_logits'])[:, :, :-1]
scores, labels = torch.max(scores, dim=-1, keepdim=True)
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
def rtdetr_pytorch_export(weights, cfg_file, device):
@@ -36,57 +33,62 @@ def rtdetr_pytorch_export(weights, cfg_file, device):
else:
state = checkpoint['model']
cfg.model.load_state_dict(state)
return cfg.model.deploy()
return cfg.model.deploy(), cfg.postprocessor.use_focal_loss
def suppress_warnings():
import warnings
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=ResourceWarning)
def main(args):
suppress_warnings()
print('\nStarting: %s' % args.weights)
print(f'\nStarting: {args.weights}')
print('Opening RT-DETR PyTorch model\n')
print('Opening RT-DETR PyTorch model')
device = torch.device('cpu')
model = rtdetr_pytorch_export(args.weights, args.config, device)
model, use_focal_loss = rtdetr_pytorch_export(args.weights, args.config, device)
img_size = args.size * 2 if len(args.size) == 1 else args.size
model = nn.Sequential(model, DeepStreamOutput(img_size))
model = nn.Sequential(model, DeepStreamOutput(img_size, use_focal_loss))
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
onnx_output_file = f'{args.weights}.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
'output': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
print('Exporting the model to ONNX')
torch.onnx.export(
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
)
if args.simplify:
print('Simplifying the ONNX model')
import onnxsim
import onnxslim
model_onnx = onnx.load(onnx_output_file)
model_onnx, _ = onnxsim.simplify(model_onnx)
model_onnx = onnxslim.slim(model_onnx)
onnx.save(model_onnx, onnx_output_file)
print('Done: %s\n' % onnx_output_file)
print(f'Done: {onnx_output_file}\n')
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion')
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)')
@@ -107,4 +109,4 @@ def parse_args():
if __name__ == '__main__':
args = parse_args()
sys.exit(main(args))
main(args)