DeepStream 7.1 + Fixes + New model output format
This commit is contained in:
@@ -1,31 +1,28 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from src.core import YAMLConfig
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self, img_size):
|
||||
self.img_size = img_size
|
||||
def __init__(self, img_size, use_focal_loss):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.use_focal_loss = use_focal_loss
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x['pred_boxes']
|
||||
boxes[:, :, [0, 2]] *= self.img_size[1]
|
||||
boxes[:, :, [1, 3]] *= self.img_size[0]
|
||||
scores, classes = torch.max(x['pred_logits'], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
|
||||
scores = F.sigmoid(x['pred_logits']) if self.use_focal_loss else F.softmax(x['pred_logits'])[:, :, :-1]
|
||||
scores, labels = torch.max(scores, dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def rtdetr_pytorch_export(weights, cfg_file, device):
|
||||
@@ -36,57 +33,62 @@ def rtdetr_pytorch_export(weights, cfg_file, device):
|
||||
else:
|
||||
state = checkpoint['model']
|
||||
cfg.model.load_state_dict(state)
|
||||
return cfg.model.deploy()
|
||||
return cfg.model.deploy(), cfg.postprocessor.use_focal_loss
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening RT-DETR PyTorch model\n')
|
||||
print('Opening RT-DETR PyTorch model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = rtdetr_pytorch_export(args.weights, args.config, device)
|
||||
model, use_focal_loss = rtdetr_pytorch_export(args.weights, args.config, device)
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size))
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size, use_focal_loss))
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
||||
parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)')
|
||||
@@ -107,4 +109,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
Reference in New Issue
Block a user