DeepStream 7.1 + Fixes + New model output format
This commit is contained in:
@@ -1,14 +1,14 @@
|
||||
import os
|
||||
import sys
|
||||
import onnx
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
from ppdet.utils.check import check_version, check_config
|
||||
from ppdet.utils.cli import ArgsParser
|
||||
|
||||
from ppdet.engine import Trainer
|
||||
from ppdet.utils.cli import ArgsParser
|
||||
from ppdet.slim import build_slim_model
|
||||
from ppdet.data.source.category import get_categories
|
||||
from ppdet.utils.check import check_version, check_config
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Layer):
|
||||
@@ -18,9 +18,20 @@ class DeepStreamOutput(nn.Layer):
|
||||
def forward(self, x):
|
||||
boxes = x['bbox']
|
||||
x['bbox_num'] = x['bbox_num'].transpose([0, 2, 1])
|
||||
scores = paddle.max(x['bbox_num'], 2, keepdim=True)
|
||||
classes = paddle.cast(paddle.argmax(x['bbox_num'], 2, keepdim=True), dtype='float32')
|
||||
return boxes, scores, classes
|
||||
scores = paddle.max(x['bbox_num'], axis=-1, keepdim=True)
|
||||
labels = paddle.argmax(x['bbox_num'], axis=-1, keepdim=True)
|
||||
return paddle.concat((boxes, scores, paddle.cast(labels, dtype=boxes.dtype)), axis=-1)
|
||||
|
||||
|
||||
class DeepStreamInput(nn.Layer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
y = {}
|
||||
y['image'] = x['image']
|
||||
y['scale_factor'] = paddle.to_tensor([1.0, 1.0], dtype=x['image'].dtype)
|
||||
return y
|
||||
|
||||
|
||||
def ppyoloe_export(FLAGS):
|
||||
@@ -43,10 +54,17 @@ def ppyoloe_export(FLAGS):
|
||||
return trainer.cfg, static_model
|
||||
|
||||
|
||||
def main(FLAGS):
|
||||
print('\nStarting: %s' % FLAGS.weights)
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
print('\nOpening PPYOLOE model\n')
|
||||
|
||||
def main(FLAGS):
|
||||
suppress_warnings()
|
||||
|
||||
print(f'\nStarting: {FLAGS.weights}')
|
||||
|
||||
print('Opening PPYOLOE model')
|
||||
|
||||
paddle.set_device('cpu')
|
||||
cfg, model = ppyoloe_export(FLAGS)
|
||||
@@ -54,32 +72,30 @@ def main(FLAGS):
|
||||
anno_file = cfg['TestDataset'].get_anno()
|
||||
if os.path.isfile(anno_file):
|
||||
_, catid2name = get_categories(cfg['metric'], anno_file, 'detection_arch')
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in catid2name.values():
|
||||
f.write(str(name) + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in catid2name.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
model = nn.Sequential(DeepStreamInput(), model, DeepStreamOutput())
|
||||
|
||||
img_size = [cfg.eval_height, cfg.eval_width]
|
||||
|
||||
onnx_input_im = {}
|
||||
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32', name='image')
|
||||
onnx_input_im['scale_factor'] = paddle.static.InputSpec(shape=[FLAGS.batch, 2], dtype='float32', name='scale_factor')
|
||||
onnx_output_file = cfg.filename + '.onnx'
|
||||
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32')
|
||||
onnx_output_file = f'{FLAGS.weights}.onnx'
|
||||
|
||||
print('\nExporting the model to ONNX\n')
|
||||
paddle.onnx.export(model, cfg.filename, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||
print('Exporting the model to ONNX')
|
||||
paddle.onnx.export(model, FLAGS.weights, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||
|
||||
if FLAGS.simplify:
|
||||
print('\nSimplifying the ONNX model')
|
||||
import onnxsim
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('\nDone: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
@@ -92,9 +108,9 @@ def parse_args():
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('\nInvalid weights file')
|
||||
raise SystemExit('Invalid weights file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('\nCannot set dynamic batch-size and static batch-size at same time')
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
elif args.dynamic:
|
||||
args.batch = None
|
||||
return args
|
||||
@@ -102,4 +118,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = parse_args()
|
||||
sys.exit(main(FLAGS))
|
||||
main(FLAGS)
|
||||
|
||||
Reference in New Issue
Block a user