DeepStream 7.1 + Fixes + New model output format
This commit is contained in:
@@ -1,14 +1,12 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from damo.base_models.core.ops import RepConv, SiLU
|
||||
|
||||
from damo.config.base import parse_config
|
||||
from damo.detectors.detector import build_local_model
|
||||
from damo.utils.model_utils import replace_module
|
||||
from damo.base_models.core.ops import RepConv, SiLU
|
||||
from damo.detectors.detector import build_local_model
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
@@ -17,15 +15,17 @@ class DeepStreamOutput(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[1]
|
||||
scores, classes = torch.max(x[0], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
scores, labels = torch.max(x[0], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def damoyolo_export(weights, config_file, device):
|
||||
@@ -48,7 +48,7 @@ def damoyolo_export(weights, config_file, device):
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening DAMO-YOLO model')
|
||||
|
||||
@@ -57,49 +57,44 @@ def main(args):
|
||||
|
||||
if len(cfg.dataset['class_names']) > 0:
|
||||
print('Creating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in cfg.dataset['class_names']:
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in cfg.dataset['class_names']:
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = cfg.miscs['exp_name'] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream DAMO-YOLO conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
||||
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
|
||||
@@ -120,4 +115,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
121
utils/export_goldyolo.py
Normal file
121
utils/export_goldyolo.py
Normal file
@@ -0,0 +1,121 @@
|
||||
import os
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import yolov6.utils.general as _m
|
||||
from yolov6.layers.common import SiLU
|
||||
from gold_yolo.switch_tool import switch_to_deploy
|
||||
from yolov6.utils.checkpoint import load_checkpoint
|
||||
|
||||
|
||||
def _dist2bbox(distance, anchor_points, box_format='xyxy'):
|
||||
lt, rb = torch.split(distance, 2, -1)
|
||||
x1y1 = anchor_points - lt
|
||||
x2y2 = anchor_points + rb
|
||||
bbox = torch.cat([x1y1, x2y2], -1)
|
||||
return bbox
|
||||
|
||||
_m.dist2bbox.__code__ = _dist2bbox.__code__
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[:, :, :4]
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
|
||||
scores *= objectness
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def gold_yolo_export(weights, device, inplace=True, fuse=True):
|
||||
model = load_checkpoint(weights, map_location=device, inplace=inplace, fuse=fuse)
|
||||
model = switch_to_deploy(model)
|
||||
for layer in model.modules():
|
||||
t = type(layer)
|
||||
if t.__name__ == 'RepVGGBlock':
|
||||
layer.switch_to_deploy()
|
||||
model.eval()
|
||||
for k, m in model.named_modules():
|
||||
if m.__class__.__name__ == 'Conv':
|
||||
if isinstance(m.act, nn.SiLU):
|
||||
m.act = SiLU()
|
||||
elif m.__class__.__name__ == 'Detect':
|
||||
m.inplace = False
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening Gold-YOLO model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = gold_yolo_export(args.weights, device)
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream Gold-YOLO conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=13, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
main(args)
|
||||
@@ -1,14 +1,14 @@
|
||||
import os
|
||||
import sys
|
||||
import onnx
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
from ppdet.utils.check import check_version, check_config
|
||||
from ppdet.utils.cli import ArgsParser
|
||||
|
||||
from ppdet.engine import Trainer
|
||||
from ppdet.utils.cli import ArgsParser
|
||||
from ppdet.slim import build_slim_model
|
||||
from ppdet.data.source.category import get_categories
|
||||
from ppdet.utils.check import check_version, check_config
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Layer):
|
||||
@@ -18,9 +18,20 @@ class DeepStreamOutput(nn.Layer):
|
||||
def forward(self, x):
|
||||
boxes = x['bbox']
|
||||
x['bbox_num'] = x['bbox_num'].transpose([0, 2, 1])
|
||||
scores = paddle.max(x['bbox_num'], 2, keepdim=True)
|
||||
classes = paddle.cast(paddle.argmax(x['bbox_num'], 2, keepdim=True), dtype='float32')
|
||||
return boxes, scores, classes
|
||||
scores = paddle.max(x['bbox_num'], axis=-1, keepdim=True)
|
||||
labels = paddle.argmax(x['bbox_num'], axis=-1, keepdim=True)
|
||||
return paddle.concat((boxes, scores, paddle.cast(labels, dtype=boxes.dtype)), axis=-1)
|
||||
|
||||
|
||||
class DeepStreamInput(nn.Layer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
y = {}
|
||||
y['image'] = x['image']
|
||||
y['scale_factor'] = paddle.to_tensor([1.0, 1.0], dtype=x['image'].dtype)
|
||||
return y
|
||||
|
||||
|
||||
def ppyoloe_export(FLAGS):
|
||||
@@ -43,10 +54,17 @@ def ppyoloe_export(FLAGS):
|
||||
return trainer.cfg, static_model
|
||||
|
||||
|
||||
def main(FLAGS):
|
||||
print('\nStarting: %s' % FLAGS.weights)
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
print('\nOpening PPYOLOE model\n')
|
||||
|
||||
def main(FLAGS):
|
||||
suppress_warnings()
|
||||
|
||||
print(f'\nStarting: {FLAGS.weights}')
|
||||
|
||||
print('Opening PPYOLOE model')
|
||||
|
||||
paddle.set_device('cpu')
|
||||
cfg, model = ppyoloe_export(FLAGS)
|
||||
@@ -54,32 +72,30 @@ def main(FLAGS):
|
||||
anno_file = cfg['TestDataset'].get_anno()
|
||||
if os.path.isfile(anno_file):
|
||||
_, catid2name = get_categories(cfg['metric'], anno_file, 'detection_arch')
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in catid2name.values():
|
||||
f.write(str(name) + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in catid2name.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
model = nn.Sequential(DeepStreamInput(), model, DeepStreamOutput())
|
||||
|
||||
img_size = [cfg.eval_height, cfg.eval_width]
|
||||
|
||||
onnx_input_im = {}
|
||||
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32', name='image')
|
||||
onnx_input_im['scale_factor'] = paddle.static.InputSpec(shape=[FLAGS.batch, 2], dtype='float32', name='scale_factor')
|
||||
onnx_output_file = cfg.filename + '.onnx'
|
||||
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32')
|
||||
onnx_output_file = f'{FLAGS.weights}.onnx'
|
||||
|
||||
print('\nExporting the model to ONNX\n')
|
||||
paddle.onnx.export(model, cfg.filename, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||
print('Exporting the model to ONNX')
|
||||
paddle.onnx.export(model, FLAGS.weights, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||
|
||||
if FLAGS.simplify:
|
||||
print('\nSimplifying the ONNX model')
|
||||
import onnxsim
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('\nDone: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
@@ -92,9 +108,9 @@ def parse_args():
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('\nInvalid weights file')
|
||||
raise SystemExit('Invalid weights file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('\nCannot set dynamic batch-size and static batch-size at same time')
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
elif args.dynamic:
|
||||
args.batch = None
|
||||
return args
|
||||
@@ -102,4 +118,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = parse_args()
|
||||
sys.exit(main(FLAGS))
|
||||
main(FLAGS)
|
||||
|
||||
@@ -1,34 +1,32 @@
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
import onnx
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
from ppdet.utils.check import check_version, check_config
|
||||
from ppdet.utils.cli import ArgsParser
|
||||
|
||||
from ppdet.engine import Trainer
|
||||
from ppdet.utils.cli import ArgsParser
|
||||
from ppdet.utils.check import check_version, check_config
|
||||
from ppdet.core.workspace import load_config, merge_config
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Layer):
|
||||
def __init__(self, img_size, use_focal_loss):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.use_focal_loss = use_focal_loss
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x['bbox']
|
||||
out_shape = paddle.to_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
|
||||
boxes *= out_shape
|
||||
convert_matrix = paddle.to_tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
boxes *= paddle.to_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
|
||||
bbox_num = F.sigmoid(x['bbox_num']) if self.use_focal_loss else F.softmax(x['bbox_num'])[:, :, :-1]
|
||||
scores = paddle.max(bbox_num, 2, keepdim=True)
|
||||
classes = paddle.cast(paddle.argmax(bbox_num, 2, keepdim=True), dtype='float32')
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore')
|
||||
scores = paddle.max(bbox_num, axis=-1, keepdim=True)
|
||||
labels = paddle.argmax(bbox_num, axis=-1, keepdim=True)
|
||||
return paddle.concat((boxes, scores, paddle.cast(labels, dtype=boxes.dtype)), axis=-1)
|
||||
|
||||
|
||||
def rtdetr_paddle_export(FLAGS):
|
||||
@@ -50,12 +48,17 @@ def rtdetr_paddle_export(FLAGS):
|
||||
return trainer.cfg, static_model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
def main(FLAGS):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % FLAGS.weights)
|
||||
print(f'\nStarting: {FLAGS.weights}')
|
||||
|
||||
print('\nOpening RT-DETR Paddle model\n')
|
||||
print('Opening RT-DETR Paddle model')
|
||||
|
||||
paddle.set_device('cpu')
|
||||
cfg, model = rtdetr_paddle_export(FLAGS)
|
||||
@@ -65,20 +68,20 @@ def main(FLAGS):
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size, cfg.use_focal_loss))
|
||||
|
||||
onnx_input_im = {}
|
||||
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32', name='image')
|
||||
onnx_output_file = cfg.filename + '.onnx'
|
||||
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32')
|
||||
onnx_output_file = f'{FLAGS.weights}.onnx'
|
||||
|
||||
print('\nExporting the model to ONNX\n')
|
||||
paddle.onnx.export(model, cfg.filename, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||
print('Exporting the model to ONNX\n')
|
||||
paddle.onnx.export(model, FLAGS.weights, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||
|
||||
if FLAGS.simplify:
|
||||
print('\nSimplifying the ONNX model')
|
||||
import onnxsim
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('\nDone: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
@@ -91,9 +94,9 @@ def parse_args():
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('\nInvalid weights file')
|
||||
raise SystemExit('Invalid weights file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('\nCannot set dynamic batch-size and static batch-size at same time')
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
elif args.dynamic:
|
||||
args.batch = None
|
||||
return args
|
||||
@@ -101,4 +104,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
FLAGS = parse_args()
|
||||
sys.exit(main(FLAGS))
|
||||
main(FLAGS)
|
||||
|
||||
@@ -1,31 +1,28 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from src.core import YAMLConfig
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self, img_size):
|
||||
self.img_size = img_size
|
||||
def __init__(self, img_size, use_focal_loss):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.use_focal_loss = use_focal_loss
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x['pred_boxes']
|
||||
boxes[:, :, [0, 2]] *= self.img_size[1]
|
||||
boxes[:, :, [1, 3]] *= self.img_size[0]
|
||||
scores, classes = torch.max(x['pred_logits'], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
|
||||
scores = F.sigmoid(x['pred_logits']) if self.use_focal_loss else F.softmax(x['pred_logits'])[:, :, :-1]
|
||||
scores, labels = torch.max(scores, dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def rtdetr_pytorch_export(weights, cfg_file, device):
|
||||
@@ -36,57 +33,62 @@ def rtdetr_pytorch_export(weights, cfg_file, device):
|
||||
else:
|
||||
state = checkpoint['model']
|
||||
cfg.model.load_state_dict(state)
|
||||
return cfg.model.deploy()
|
||||
return cfg.model.deploy(), cfg.postprocessor.use_focal_loss
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening RT-DETR PyTorch model\n')
|
||||
print('Opening RT-DETR PyTorch model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = rtdetr_pytorch_export(args.weights, args.config, device)
|
||||
model, use_focal_loss = rtdetr_pytorch_export(args.weights, args.config, device)
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size))
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size, use_focal_loss))
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream RT-DETR PyTorch conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
||||
parser.add_argument('-c', '--config', required=True, help='Input YAML (.yml) file path (required)')
|
||||
@@ -107,4 +109,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,34 +1,25 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
|
||||
from ultralytics import RTDETR
|
||||
from ultralytics.utils.torch_utils import select_device
|
||||
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self, img_size):
|
||||
self.img_size = img_size
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[:, :, :4]
|
||||
boxes[:, :, [0, 2]] *= self.img_size[1]
|
||||
boxes[:, :, [1, 3]] *= self.img_size[0]
|
||||
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
boxes *= torch.as_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
|
||||
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def rtdetr_ultralytics_export(weights, device):
|
||||
@@ -40,74 +31,74 @@ def rtdetr_ultralytics_export(weights, device):
|
||||
model.float()
|
||||
model = model.fuse()
|
||||
for k, m in model.named_modules():
|
||||
if isinstance(m, (Detect, RTDETRDecoder)):
|
||||
if m.__class__.__name__ in ('Detect', 'RTDETRDecoder'):
|
||||
m.dynamic = False
|
||||
m.export = True
|
||||
m.format = 'onnx'
|
||||
elif isinstance(m, C2f):
|
||||
elif m.__class__.__name__ == 'C2f':
|
||||
m.forward = m.forward_split
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening RT-DETR Ultralytics model\n')
|
||||
print('Opening RT-DETR Ultralytics model')
|
||||
|
||||
device = select_device('cpu')
|
||||
device = torch.device('cpu')
|
||||
model = rtdetr_ultralytics_export(args.weights, device)
|
||||
|
||||
if len(model.names.keys()) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names.values():
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size))
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
print('Simplifying is not available for this model')
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream RT-DETR Ultralytics conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
|
||||
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
@@ -121,4 +112,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
150
utils/export_rtmdet.py
Normal file
150
utils/export_rtmdet.py
Normal file
@@ -0,0 +1,150 @@
|
||||
import os
|
||||
import types
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from mmdet.apis import init_detector
|
||||
from projects.easydeploy.model import DeployModel, MMYOLOBackend
|
||||
from projects.easydeploy.bbox_code import rtmdet_bbox_decoder as bbox_decoder
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[0]
|
||||
scores, labels = torch.max(x[1], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def pred_by_feat_deepstream(self, cls_scores, bbox_preds, objectnesses=None, **kwargs):
|
||||
assert len(cls_scores) == len(bbox_preds)
|
||||
dtype = cls_scores[0].dtype
|
||||
device = cls_scores[0].device
|
||||
|
||||
num_imgs = cls_scores[0].shape[0]
|
||||
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
|
||||
|
||||
mlvl_priors = self.prior_generate(featmap_sizes, dtype=dtype, device=device)
|
||||
|
||||
flatten_priors = torch.cat(mlvl_priors)
|
||||
|
||||
mlvl_strides = [
|
||||
flatten_priors.new_full(
|
||||
(featmap_size[0] * featmap_size[1] * self.num_base_priors,), stride
|
||||
) for featmap_size, stride in zip(
|
||||
featmap_sizes, self.featmap_strides
|
||||
)
|
||||
]
|
||||
flatten_stride = torch.cat(mlvl_strides)
|
||||
|
||||
flatten_cls_scores = [
|
||||
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1, self.num_classes) for cls_score in cls_scores
|
||||
]
|
||||
cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
|
||||
|
||||
flatten_bbox_preds = [bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) for bbox_pred in bbox_preds]
|
||||
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
|
||||
|
||||
if objectnesses is not None:
|
||||
flatten_objectness = [objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1) for objectness in objectnesses]
|
||||
flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
|
||||
cls_scores = cls_scores * (flatten_objectness.unsqueeze(-1))
|
||||
|
||||
scores = cls_scores
|
||||
|
||||
bboxes = bbox_decoder(flatten_priors[None], flatten_bbox_preds, flatten_stride)
|
||||
|
||||
return bboxes, scores
|
||||
|
||||
|
||||
def rtmdet_export(weights, config, device):
|
||||
model = init_detector(config, weights, device=device)
|
||||
model.eval()
|
||||
deploy_model = DeployModel(baseModel=model, backend=MMYOLOBackend.ONNXRUNTIME, postprocess_cfg=None)
|
||||
deploy_model.eval()
|
||||
deploy_model.with_postprocess = True
|
||||
deploy_model.prior_generate = model.bbox_head.prior_generator.grid_priors
|
||||
deploy_model.num_base_priors = model.bbox_head.num_base_priors
|
||||
deploy_model.featmap_strides = model.bbox_head.featmap_strides
|
||||
deploy_model.num_classes = model.bbox_head.num_classes
|
||||
deploy_model.pred_by_feat = types.MethodType(pred_by_feat_deepstream, deploy_model)
|
||||
return deploy_model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening RTMDet model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = rtmdet_export(args.weights, args.config, device)
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream RTMDet conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-c', '--config', required=True, help='Input config (.py) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if not os.path.isfile(args.config):
|
||||
raise SystemExit('Invalid config file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
main(args)
|
||||
@@ -1,13 +1,9 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from models.experimental import attempt_load
|
||||
from utils.torch_utils import select_device
|
||||
from models.yolo import Detect
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
@@ -17,46 +13,51 @@ class DeepStreamOutput(nn.Module):
|
||||
def forward(self, x):
|
||||
x = x[0]
|
||||
boxes = x[:, :, :4]
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
|
||||
|
||||
def yolov5_export(weights, device):
|
||||
model = attempt_load(weights, device=device, inplace=True, fuse=True)
|
||||
def yolov5_export(weights, device, inplace=True, fuse=True):
|
||||
model = attempt_load(weights, device=device, inplace=inplace, fuse=fuse)
|
||||
model.eval()
|
||||
for k, m in model.named_modules():
|
||||
if isinstance(m, Detect):
|
||||
if m.__class__.__name__ == 'Detect':
|
||||
m.inplace = False
|
||||
m.dynamic = False
|
||||
m.export = True
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOv5 model\n')
|
||||
print('Opening YOLOv5 model')
|
||||
|
||||
device = select_device('cpu')
|
||||
device = torch.device('cpu')
|
||||
model = yolov5_export(args.weights, device)
|
||||
|
||||
if len(model.names.keys()) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names.values():
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
@@ -66,41 +67,37 @@ def main(args):
|
||||
img_size = [1280] * 2
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv5 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--p6', action='store_true', help='P6 model')
|
||||
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
|
||||
@@ -117,4 +114,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from yolov6.utils.checkpoint import load_checkpoint
|
||||
from yolov6.layers.common import RepVGGBlock, SiLU
|
||||
|
||||
from yolov6.models.effidehead import Detect
|
||||
from yolov6.layers.common import RepVGGBlock, SiLU
|
||||
from yolov6.utils.checkpoint import load_checkpoint
|
||||
|
||||
try:
|
||||
from yolov6.layers.common import ConvModule
|
||||
@@ -21,17 +19,14 @@ class DeepStreamOutput(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[:, :, :4]
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def yolov6_export(weights, device):
|
||||
@@ -51,12 +46,21 @@ def yolov6_export(weights, device):
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOv6 model\n')
|
||||
print('Opening YOLOv6 model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = yolov6_export(args.weights, device)
|
||||
@@ -69,39 +73,35 @@ def main(args):
|
||||
img_size = [1280] * 2
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv6 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
@@ -120,4 +120,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import models
|
||||
from models.experimental import attempt_load
|
||||
from utils.torch_utils import select_device
|
||||
@@ -17,17 +15,14 @@ class DeepStreamOutput(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[:, :, :4]
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def yolov7_export(weights, device):
|
||||
@@ -45,22 +40,30 @@ def yolov7_export(weights, device):
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOv7 model\n')
|
||||
print('Opening YOLOv7 model')
|
||||
|
||||
device = select_device('cpu')
|
||||
model = yolov7_export(args.weights, device)
|
||||
|
||||
if len(model.names) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names:
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
if hasattr(model, 'names') and len(model.names) > 0:
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names:
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
@@ -70,39 +73,35 @@ def main(args):
|
||||
img_size = [1280] * 2
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv7 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
@@ -121,4 +120,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from utils.torch_utils import select_device
|
||||
from models.experimental import attempt_load
|
||||
from models.yolo import Detect, V6Detect, IV6Detect
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
@@ -17,15 +15,12 @@ class DeepStreamOutput(nn.Module):
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, 2)
|
||||
boxes = x[:, :, :4]
|
||||
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def yolov7_u6_export(weights, device):
|
||||
@@ -39,61 +34,65 @@ def yolov7_u6_export(weights, device):
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOv7_u6 model\n')
|
||||
print('Opening YOLOv7_u6 model')
|
||||
|
||||
device = select_device('cpu')
|
||||
model = yolov7_u6_export(args.weights, device)
|
||||
|
||||
if len(model.names.keys()) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names.values():
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv7-u6 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
@@ -111,4 +110,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,14 +1,26 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.utils.torch_utils import select_device
|
||||
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
|
||||
|
||||
import ultralytics.utils
|
||||
import ultralytics.models.yolo
|
||||
import ultralytics.utils.tal as _m
|
||||
|
||||
sys.modules['ultralytics.yolo'] = ultralytics.models.yolo
|
||||
sys.modules['ultralytics.yolo.utils'] = ultralytics.utils
|
||||
|
||||
|
||||
def _dist2bbox(distance, anchor_points, xywh=False, dim=-1):
|
||||
lt, rb = distance.chunk(2, dim)
|
||||
x1y1 = anchor_points - lt
|
||||
x2y2 = anchor_points + rb
|
||||
return torch.cat((x1y1, x2y2), dim)
|
||||
|
||||
|
||||
_m.dist2bbox.__code__ = _dist2bbox.__code__
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
@@ -18,94 +30,103 @@ class DeepStreamOutput(nn.Module):
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, 2)
|
||||
boxes = x[:, :, :4]
|
||||
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
|
||||
|
||||
def yolov8_export(weights, device):
|
||||
model = YOLO(weights)
|
||||
model = deepcopy(model.model).to(device)
|
||||
def yolov8_export(weights, device, inplace=True, fuse=True):
|
||||
ckpt = torch.load(weights, map_location='cpu')
|
||||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()
|
||||
if not hasattr(ckpt, 'stride'):
|
||||
ckpt.stride = torch.tensor([32.])
|
||||
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
||||
ckpt.names = dict(enumerate(ckpt.names))
|
||||
model = ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if hasattr(m, 'inplace'):
|
||||
m.inplace = inplace
|
||||
elif t.__name__ == 'Upsample' and not hasattr(m, 'recompute_scale_factor'):
|
||||
m.recompute_scale_factor = None
|
||||
model = deepcopy(model).to(device)
|
||||
for p in model.parameters():
|
||||
p.requires_grad = False
|
||||
model.eval()
|
||||
model.float()
|
||||
model = model.fuse()
|
||||
for k, m in model.named_modules():
|
||||
if isinstance(m, (Detect, RTDETRDecoder)):
|
||||
if m.__class__.__name__ in ('Detect', 'RTDETRDecoder'):
|
||||
m.dynamic = False
|
||||
m.export = True
|
||||
m.format = 'onnx'
|
||||
elif isinstance(m, C2f):
|
||||
elif m.__class__.__name__ == 'C2f':
|
||||
m.forward = m.forward_split
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOv8 model\n')
|
||||
print('Opening YOLOv8 model')
|
||||
|
||||
device = select_device('cpu')
|
||||
device = torch.device('cpu')
|
||||
model = yolov8_export(args.weights, device)
|
||||
|
||||
if len(model.names.keys()) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names.values():
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv8 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
|
||||
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
@@ -119,4 +140,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
145
utils/export_yoloV9.py
Normal file
145
utils/export_yoloV9.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import os
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import utils.tal.anchor_generator as _m
|
||||
|
||||
|
||||
def _dist2bbox(distance, anchor_points, xywh=False, dim=-1):
|
||||
lt, rb = torch.split(distance, 2, dim)
|
||||
x1y1 = anchor_points - lt
|
||||
x2y2 = anchor_points + rb
|
||||
return torch.cat((x1y1, x2y2), dim)
|
||||
|
||||
|
||||
_m.dist2bbox.__code__ = _dist2bbox.__code__
|
||||
|
||||
|
||||
class DeepStreamOutputDual(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
x = x[1].transpose(1, 2)
|
||||
boxes = x[:, :, :4]
|
||||
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, 2)
|
||||
boxes = x[:, :, :4]
|
||||
scores, labels = torch.max(x[:, :, 4:], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def yolov9_export(weights, device, inplace=True, fuse=True):
|
||||
ckpt = torch.load(weights, map_location='cpu')
|
||||
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()
|
||||
if not hasattr(ckpt, 'stride'):
|
||||
ckpt.stride = torch.tensor([32.])
|
||||
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
||||
ckpt.names = dict(enumerate(ckpt.names))
|
||||
model = ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()
|
||||
for m in model.modules():
|
||||
t = type(m)
|
||||
if t.__name__ in ('Hardswish', 'LeakyReLU', 'ReLU', 'ReLU6', 'SiLU', 'Detect', 'Model'):
|
||||
m.inplace = inplace
|
||||
elif t.__name__ == 'Upsample' and not hasattr(m, 'recompute_scale_factor'):
|
||||
m.recompute_scale_factor = None
|
||||
model.eval()
|
||||
head = 'Detect'
|
||||
for k, m in model.named_modules():
|
||||
if m.__class__.__name__ in ('Detect', 'DDetect', 'DualDetect', 'DualDDetect'):
|
||||
m.inplace = False
|
||||
m.dynamic = False
|
||||
m.export = True
|
||||
head = m.__class__.__name__
|
||||
return model, head
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOv9 model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model, head = yolov9_export(args.weights, device)
|
||||
|
||||
if len(model.names.keys()) > 0:
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names.values():
|
||||
f.write(f'{name}\n')
|
||||
|
||||
if head in ('Detect', 'DDetect'):
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
else:
|
||||
model = nn.Sequential(model, DeepStreamOutputDual())
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOv9 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
main(args)
|
||||
@@ -1,10 +1,8 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from super_gradients.training import models
|
||||
|
||||
|
||||
@@ -14,15 +12,17 @@ class DeepStreamOutput(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[0]
|
||||
scores, classes = torch.max(x[1], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
scores, labels = torch.max(x[1], dim=-1, keepdim=True)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def yolonas_export(model_name, weights, num_classes, size):
|
||||
@@ -36,9 +36,9 @@ def yolonas_export(model_name, weights, num_classes, size):
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLO-NAS model\n')
|
||||
print('Opening YOLO-NAS model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = yolonas_export(args.model, args.weights, args.classes, args.size)
|
||||
@@ -48,39 +48,35 @@ def main(args):
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLO-NAS conversion')
|
||||
parser.add_argument('-m', '--model', required=True, help='Model name (required)')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
||||
@@ -102,4 +98,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,7 +1,4 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -14,17 +11,14 @@ class DeepStreamOutput(nn.Module):
|
||||
def forward(self, x):
|
||||
x = x[0]
|
||||
boxes = x[:, :, :4]
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def yolor_export(weights, cfg, size, device):
|
||||
@@ -57,22 +51,30 @@ def yolor_export(weights, cfg, size, device):
|
||||
return model
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOR model\n')
|
||||
print('Opening YOLOR model')
|
||||
|
||||
device = torch.device('cpu')
|
||||
model = yolor_export(args.weights, args.cfg, args.size, device)
|
||||
|
||||
if hasattr(model, 'names') and len(model.names) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names:
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
print('Creating labels.txt file')
|
||||
with open('labels.txt', 'w', encoding='utf-8') as f:
|
||||
for name in model.names:
|
||||
f.write(f'{name}\n')
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput())
|
||||
|
||||
@@ -82,41 +84,37 @@ def main(args):
|
||||
img_size = [1280] * 2
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOR conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-w', '--weights', required=True, type=str, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-c', '--cfg', default='', help='Input cfg (.cfg) file path')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--p6', action='store_true', help='P6 model')
|
||||
@@ -134,4 +132,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from yolox.exp import get_exp
|
||||
from yolox.utils import replace_module
|
||||
from yolox.models.network_blocks import SiLU
|
||||
@@ -16,17 +14,14 @@ class DeepStreamOutput(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[:, :, :4]
|
||||
convert_matrix = torch.tensor(
|
||||
[[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=boxes.dtype, device=boxes.device
|
||||
)
|
||||
boxes @= convert_matrix
|
||||
objectness = x[:, :, 4:5]
|
||||
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
|
||||
scores, labels = torch.max(x[:, :, 5:], dim=-1, keepdim=True)
|
||||
scores *= objectness
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
return torch.cat([boxes, scores, labels.to(boxes.dtype)], dim=-1)
|
||||
|
||||
|
||||
def yolox_export(weights, exp_file):
|
||||
@@ -42,10 +37,19 @@ def yolox_export(weights, exp_file):
|
||||
return model, exp
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
import warnings
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
warnings.filterwarnings('ignore', category=FutureWarning)
|
||||
warnings.filterwarnings('ignore', category=ResourceWarning)
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
print(f'\nStarting: {args.weights}')
|
||||
|
||||
print('Opening YOLOX model')
|
||||
|
||||
@@ -57,39 +61,35 @@ def main(args):
|
||||
img_size = [exp.input_size[1], exp.input_size[0]]
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
onnx_output_file = f'{args.weights}.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
'output': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('Exporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
torch.onnx.export(
|
||||
model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset, do_constant_folding=True,
|
||||
input_names=['input'], output_names=['output'], dynamic_axes=dynamic_axes if args.dynamic else None
|
||||
)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
import onnxslim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
model_onnx = onnxslim.slim(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
print(f'Done: {onnx_output_file}\n')
|
||||
|
||||
|
||||
def parse_args():
|
||||
import argparse
|
||||
parser = argparse.ArgumentParser(description='DeepStream YOLOX conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pth) file path (required)')
|
||||
parser.add_argument('-c', '--exp', required=True, help='Input exp (.py) file path (required)')
|
||||
@@ -100,8 +100,6 @@ def parse_args():
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if not os.path.isfile(args.exp):
|
||||
raise SystemExit('Invalid exp file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
@@ -109,4 +107,4 @@ def parse_args():
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
main(args)
|
||||
|
||||
Reference in New Issue
Block a user