Add benchmarks
This commit is contained in:
37
README.md
37
README.md
@@ -8,7 +8,6 @@ NVIDIA DeepStream SDK 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 configuration for YOLO mod
|
||||
|
||||
### Future updates
|
||||
|
||||
* Models benchmarks
|
||||
* DeepStream tutorials
|
||||
* Dynamic batch-size
|
||||
* Updated INT8 calibration
|
||||
@@ -19,6 +18,7 @@ NVIDIA DeepStream SDK 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 configuration for YOLO mod
|
||||
|
||||
* Support for INT8 calibration
|
||||
* Support for non square models
|
||||
* Models benchmarks
|
||||
* **Support for Darknet YOLO models (YOLOv4, etc) using cfg and weights conversion with GPU post-processing**
|
||||
* **Support for YOLO-NAS, PPYOLOE+, PPYOLOE, YOLOX, YOLOR, YOLOv8, YOLOv7, YOLOv6 and YOLOv5 using ONNX conversion with GPU post-processing**
|
||||
|
||||
@@ -168,9 +168,36 @@ topk = 300
|
||||
|
||||
**NOTE**: ** = The YOLOv4 is trained with the trainvalno5k set, so the mAP is high on val2017 test
|
||||
|
||||
| DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(without display) |
|
||||
|:------------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:--------------------------:|
|
||||
| Coming soon | FP16 | 640 | | | | |
|
||||
**NOTE**: The p3.2xlarge instance (AWS) seems to max out at 625-635 FPS on DeepStream even using lighter models
|
||||
|
||||
| DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(without display) |
|
||||
|:----------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:--------------------------:|
|
||||
| YOLO-NAS L | FP16 | 640 | 0.484 | 0.658 | 0.532 | 235.27 |
|
||||
| YOLO-NAS M | FP16 | 640 | 0.480 | 0.651 | 0.524 | 287.39 |
|
||||
| YOLO-NAS S | FP16 | 640 | 0.442 | 0.614 | 0.485 | 478.52 |
|
||||
| PP-YOLOE+_x | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| PP-YOLOE+_l | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| PP-YOLOE+_m | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| PP-YOLOE+_s | FP16 | 640 | 0.424 | 0.594 | 0.464 | 476.13 |
|
||||
| PP-YOLOE-s (400) | FP16 | 640 | 0.423 | 0.589 | 0.463 | 461.23 |
|
||||
| YOLOX-x | FP16 | 640 | 0.447 | 0.616 | 0.483 | 125.40 |
|
||||
| YOLOX-l | FP16 | 640 | 0.430 | 0.598 | 0.466 | 193.10 |
|
||||
| YOLOX-m | FP16 | 640 | 0.397 | 0.566 | 0.431 | 298.61 |
|
||||
| YOLOX-s | FP16 | 640 | 0.335 | 0.502 | 0.365 | 522.05 |
|
||||
| YOLOX-s legacy | FP16 | 640 | 0.375 | 0.569 | 0.407 | 518.52 |
|
||||
| YOLOX-Darknet | FP16 | 640 | 0.414 | 0.595 | 0.453 | 212.88 |
|
||||
| YOLOX-Tiny | FP16 | 640 | 0.274 | 0.427 | 0.292 | 633.95 |
|
||||
| YOLOX-Nano | FP16 | 640 | 0.212 | 0.342 | 0.222 | 633.04 |
|
||||
| YOLOv8x | FP16 | 640 | 0.499 | 0.669 | 0.545 | 130.49 |
|
||||
| YOLOv8l | FP16 | 640 | 0.491 | 0.660 | 0.535 | 180.75 |
|
||||
| YOLOv8m | FP16 | 640 | 0.468 | 0.637 | 0.510 | 278.08 |
|
||||
| YOLOv8s | FP16 | 640 | 0.415 | 0.578 | 0.453 | 493.45 |
|
||||
| YOLOv8n | FP16 | 640 | 0.343 | 0.492 | 0.373 | 627.43 |
|
||||
| YOLOv7 | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| YOLOv6s 3.0 | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| YOLOv5s 7.0 | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| YOLOv4 | FP16 | 640 | 0. | 0. | 0. | |
|
||||
| YOLOv3 | FP16 | 640 | 0. | 0. | 0. | |
|
||||
|
||||
##
|
||||
|
||||
@@ -926,6 +953,8 @@ model-file=yolov4.weights
|
||||
deepstream-app -c deepstream_app_config.txt
|
||||
```
|
||||
|
||||
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
||||
|
||||
**NOTE**: If you want to use YOLOv2 or YOLOv2-Tiny models, change the `deepstream_app_config.txt` file before run it
|
||||
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user