Support for YOLOv5 4.0
Added support for YOLOv5 4.0
This commit is contained in:
333
external/yolov5-4.0/nvdsinfer_custom_impl_Yolo/yololayer.cu
vendored
Normal file
333
external/yolov5-4.0/nvdsinfer_custom_impl_Yolo/yololayer.cu
vendored
Normal file
@@ -0,0 +1,333 @@
|
||||
#include <assert.h>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include "yololayer.h"
|
||||
#include "cuda_utils.h"
|
||||
|
||||
namespace Tn
|
||||
{
|
||||
template<typename T>
|
||||
void write(char*& buffer, const T& val)
|
||||
{
|
||||
*reinterpret_cast<T*>(buffer) = val;
|
||||
buffer += sizeof(T);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void read(const char*& buffer, T& val)
|
||||
{
|
||||
val = *reinterpret_cast<const T*>(buffer);
|
||||
buffer += sizeof(T);
|
||||
}
|
||||
}
|
||||
|
||||
using namespace Yolo;
|
||||
|
||||
namespace nvinfer1
|
||||
{
|
||||
YoloLayerPlugin::YoloLayerPlugin(int classCount, int netWidth, int netHeight, int maxOut, const std::vector<Yolo::YoloKernel>& vYoloKernel)
|
||||
{
|
||||
mClassCount = classCount;
|
||||
mYoloV5NetWidth = netWidth;
|
||||
mYoloV5NetHeight = netHeight;
|
||||
mMaxOutObject = maxOut;
|
||||
mYoloKernel = vYoloKernel;
|
||||
mKernelCount = vYoloKernel.size();
|
||||
|
||||
CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*)));
|
||||
size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2;
|
||||
for (int ii = 0; ii < mKernelCount; ii++)
|
||||
{
|
||||
CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen));
|
||||
const auto& yolo = mYoloKernel[ii];
|
||||
CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice));
|
||||
}
|
||||
}
|
||||
YoloLayerPlugin::~YoloLayerPlugin()
|
||||
{
|
||||
for (int ii = 0; ii < mKernelCount; ii++)
|
||||
{
|
||||
CUDA_CHECK(cudaFree(mAnchor[ii]));
|
||||
}
|
||||
CUDA_CHECK(cudaFreeHost(mAnchor));
|
||||
}
|
||||
|
||||
// create the plugin at runtime from a byte stream
|
||||
YoloLayerPlugin::YoloLayerPlugin(const void* data, size_t length)
|
||||
{
|
||||
using namespace Tn;
|
||||
const char *d = reinterpret_cast<const char *>(data), *a = d;
|
||||
read(d, mClassCount);
|
||||
read(d, mThreadCount);
|
||||
read(d, mKernelCount);
|
||||
read(d, mYoloV5NetWidth);
|
||||
read(d, mYoloV5NetHeight);
|
||||
read(d, mMaxOutObject);
|
||||
mYoloKernel.resize(mKernelCount);
|
||||
auto kernelSize = mKernelCount * sizeof(YoloKernel);
|
||||
memcpy(mYoloKernel.data(), d, kernelSize);
|
||||
d += kernelSize;
|
||||
CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*)));
|
||||
size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2;
|
||||
for (int ii = 0; ii < mKernelCount; ii++)
|
||||
{
|
||||
CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen));
|
||||
const auto& yolo = mYoloKernel[ii];
|
||||
CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice));
|
||||
}
|
||||
assert(d == a + length);
|
||||
}
|
||||
|
||||
void YoloLayerPlugin::serialize(void* buffer) const
|
||||
{
|
||||
using namespace Tn;
|
||||
char* d = static_cast<char*>(buffer), *a = d;
|
||||
write(d, mClassCount);
|
||||
write(d, mThreadCount);
|
||||
write(d, mKernelCount);
|
||||
write(d, mYoloV5NetWidth);
|
||||
write(d, mYoloV5NetHeight);
|
||||
write(d, mMaxOutObject);
|
||||
auto kernelSize = mKernelCount * sizeof(YoloKernel);
|
||||
memcpy(d, mYoloKernel.data(), kernelSize);
|
||||
d += kernelSize;
|
||||
|
||||
assert(d == a + getSerializationSize());
|
||||
}
|
||||
|
||||
size_t YoloLayerPlugin::getSerializationSize() const
|
||||
{
|
||||
return sizeof(mClassCount) + sizeof(mThreadCount) + sizeof(mKernelCount) + sizeof(Yolo::YoloKernel) * mYoloKernel.size() + sizeof(mYoloV5NetWidth) + sizeof(mYoloV5NetHeight) + sizeof(mMaxOutObject);
|
||||
}
|
||||
|
||||
int YoloLayerPlugin::initialize()
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
Dims YoloLayerPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims)
|
||||
{
|
||||
//output the result to channel
|
||||
int totalsize = mMaxOutObject * sizeof(Detection) / sizeof(float);
|
||||
|
||||
return Dims3(totalsize + 1, 1, 1);
|
||||
}
|
||||
|
||||
// Set plugin namespace
|
||||
void YoloLayerPlugin::setPluginNamespace(const char* pluginNamespace)
|
||||
{
|
||||
mPluginNamespace = pluginNamespace;
|
||||
}
|
||||
|
||||
const char* YoloLayerPlugin::getPluginNamespace() const
|
||||
{
|
||||
return mPluginNamespace;
|
||||
}
|
||||
|
||||
// Return the DataType of the plugin output at the requested index
|
||||
DataType YoloLayerPlugin::getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const
|
||||
{
|
||||
return DataType::kFLOAT;
|
||||
}
|
||||
|
||||
// Return true if output tensor is broadcast across a batch.
|
||||
bool YoloLayerPlugin::isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// Return true if plugin can use input that is broadcast across batch without replication.
|
||||
bool YoloLayerPlugin::canBroadcastInputAcrossBatch(int inputIndex) const
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
void YoloLayerPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput)
|
||||
{
|
||||
}
|
||||
|
||||
// Attach the plugin object to an execution context and grant the plugin the access to some context resource.
|
||||
void YoloLayerPlugin::attachToContext(cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator)
|
||||
{
|
||||
}
|
||||
|
||||
// Detach the plugin object from its execution context.
|
||||
void YoloLayerPlugin::detachFromContext() {}
|
||||
|
||||
const char* YoloLayerPlugin::getPluginType() const
|
||||
{
|
||||
return "YoloLayer_TRT";
|
||||
}
|
||||
|
||||
const char* YoloLayerPlugin::getPluginVersion() const
|
||||
{
|
||||
return "1";
|
||||
}
|
||||
|
||||
void YoloLayerPlugin::destroy()
|
||||
{
|
||||
delete this;
|
||||
}
|
||||
|
||||
// Clone the plugin
|
||||
IPluginV2IOExt* YoloLayerPlugin::clone() const
|
||||
{
|
||||
YoloLayerPlugin* p = new YoloLayerPlugin(mClassCount, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, mYoloKernel);
|
||||
p->setPluginNamespace(mPluginNamespace);
|
||||
return p;
|
||||
}
|
||||
|
||||
__device__ float Logist(float data) { return 1.0f / (1.0f + expf(-data)); };
|
||||
|
||||
__global__ void CalDetection(const float *input, float *output, int noElements,
|
||||
const int netwidth, const int netheight, int maxoutobject, int yoloWidth, int yoloHeight, const float anchors[CHECK_COUNT * 2], int classes, int outputElem)
|
||||
{
|
||||
|
||||
int idx = threadIdx.x + blockDim.x * blockIdx.x;
|
||||
if (idx >= noElements) return;
|
||||
|
||||
int total_grid = yoloWidth * yoloHeight;
|
||||
int bnIdx = idx / total_grid;
|
||||
idx = idx - total_grid * bnIdx;
|
||||
int info_len_i = 5 + classes;
|
||||
const float* curInput = input + bnIdx * (info_len_i * total_grid * CHECK_COUNT);
|
||||
|
||||
for (int k = 0; k < 3; ++k) {
|
||||
float box_prob = Logist(curInput[idx + k * info_len_i * total_grid + 4 * total_grid]);
|
||||
if (box_prob < IGNORE_THRESH) continue;
|
||||
int class_id = 0;
|
||||
float max_cls_prob = 0.0;
|
||||
for (int i = 5; i < info_len_i; ++i) {
|
||||
float p = Logist(curInput[idx + k * info_len_i * total_grid + i * total_grid]);
|
||||
if (p > max_cls_prob) {
|
||||
max_cls_prob = p;
|
||||
class_id = i - 5;
|
||||
}
|
||||
}
|
||||
float *res_count = output + bnIdx * outputElem;
|
||||
int count = (int)atomicAdd(res_count, 1);
|
||||
if (count >= maxoutobject) return;
|
||||
char* data = (char *)res_count + sizeof(float) + count * sizeof(Detection);
|
||||
Detection* det = (Detection*)(data);
|
||||
|
||||
int row = idx / yoloWidth;
|
||||
int col = idx % yoloWidth;
|
||||
|
||||
//Location
|
||||
// pytorch:
|
||||
// y = x[i].sigmoid()
|
||||
// y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
||||
// y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||
// X: (sigmoid(tx) + cx)/FeaturemapW * netwidth
|
||||
det->bbox[0] = (col - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 0 * total_grid])) * netwidth / yoloWidth;
|
||||
det->bbox[1] = (row - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 1 * total_grid])) * netheight / yoloHeight;
|
||||
|
||||
// W: (Pw * e^tw) / FeaturemapW * netwidth
|
||||
// v5: https://github.com/ultralytics/yolov5/issues/471
|
||||
det->bbox[2] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 2 * total_grid]);
|
||||
det->bbox[2] = det->bbox[2] * det->bbox[2] * anchors[2 * k];
|
||||
det->bbox[3] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 3 * total_grid]);
|
||||
det->bbox[3] = det->bbox[3] * det->bbox[3] * anchors[2 * k + 1];
|
||||
det->conf = box_prob * max_cls_prob;
|
||||
det->class_id = class_id;
|
||||
}
|
||||
}
|
||||
|
||||
void YoloLayerPlugin::forwardGpu(const float *const * inputs, float* output, cudaStream_t stream, int batchSize)
|
||||
{
|
||||
int outputElem = 1 + mMaxOutObject * sizeof(Detection) / sizeof(float);
|
||||
for (int idx = 0; idx < batchSize; ++idx) {
|
||||
CUDA_CHECK(cudaMemset(output + idx * outputElem, 0, sizeof(float)));
|
||||
}
|
||||
int numElem = 0;
|
||||
for (unsigned int i = 0; i < mYoloKernel.size(); ++i)
|
||||
{
|
||||
const auto& yolo = mYoloKernel[i];
|
||||
numElem = yolo.width*yolo.height*batchSize;
|
||||
if (numElem < mThreadCount)
|
||||
mThreadCount = numElem;
|
||||
|
||||
//printf("Net: %d %d \n", mYoloV5NetWidth, mYoloV5NetHeight);
|
||||
CalDetection << < (yolo.width*yolo.height*batchSize + mThreadCount - 1) / mThreadCount, mThreadCount, 0, stream >> >
|
||||
(inputs[i], output, numElem, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, yolo.width, yolo.height, (float *)mAnchor[i], mClassCount, outputElem);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int YoloLayerPlugin::enqueue(int batchSize, const void*const * inputs, void** outputs, void* workspace, cudaStream_t stream)
|
||||
{
|
||||
forwardGpu((const float *const *)inputs, (float*)outputs[0], stream, batchSize);
|
||||
return 0;
|
||||
}
|
||||
|
||||
PluginFieldCollection YoloPluginCreator::mFC{};
|
||||
std::vector<PluginField> YoloPluginCreator::mPluginAttributes;
|
||||
|
||||
YoloPluginCreator::YoloPluginCreator()
|
||||
{
|
||||
mPluginAttributes.clear();
|
||||
|
||||
mFC.nbFields = mPluginAttributes.size();
|
||||
mFC.fields = mPluginAttributes.data();
|
||||
}
|
||||
|
||||
const char* YoloPluginCreator::getPluginName() const
|
||||
{
|
||||
return "YoloLayer_TRT";
|
||||
}
|
||||
|
||||
const char* YoloPluginCreator::getPluginVersion() const
|
||||
{
|
||||
return "1";
|
||||
}
|
||||
|
||||
const PluginFieldCollection* YoloPluginCreator::getFieldNames()
|
||||
{
|
||||
return &mFC;
|
||||
}
|
||||
|
||||
IPluginV2IOExt* YoloPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc)
|
||||
{
|
||||
int class_count = -1;
|
||||
int input_w = -1;
|
||||
int input_h = -1;
|
||||
int max_output_object_count = -1;
|
||||
std::vector<Yolo::YoloKernel> yolo_kernels(3);
|
||||
|
||||
const PluginField* fields = fc->fields;
|
||||
for (int i = 0; i < fc->nbFields; i++) {
|
||||
if (strcmp(fields[i].name, "netdata") == 0) {
|
||||
assert(fields[i].type == PluginFieldType::kFLOAT32);
|
||||
int *tmp = (int*)(fields[i].data);
|
||||
class_count = tmp[0];
|
||||
input_w = tmp[1];
|
||||
input_h = tmp[2];
|
||||
max_output_object_count = tmp[3];
|
||||
} else if (strstr(fields[i].name, "yolodata") != NULL) {
|
||||
assert(fields[i].type == PluginFieldType::kFLOAT32);
|
||||
int *tmp = (int*)(fields[i].data);
|
||||
YoloKernel kernel;
|
||||
kernel.width = tmp[0];
|
||||
kernel.height = tmp[1];
|
||||
for (int j = 0; j < fields[i].length - 2; j++) {
|
||||
kernel.anchors[j] = tmp[j + 2];
|
||||
}
|
||||
yolo_kernels[2 - (fields[i].name[8] - '1')] = kernel;
|
||||
}
|
||||
}
|
||||
assert(class_count && input_w && input_h && max_output_object_count);
|
||||
YoloLayerPlugin* obj = new YoloLayerPlugin(class_count, input_w, input_h, max_output_object_count, yolo_kernels);
|
||||
obj->setPluginNamespace(mNamespace.c_str());
|
||||
return obj;
|
||||
}
|
||||
|
||||
IPluginV2IOExt* YoloPluginCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength)
|
||||
{
|
||||
// This object will be deleted when the network is destroyed, which will
|
||||
// call YoloLayerPlugin::destroy()
|
||||
YoloLayerPlugin* obj = new YoloLayerPlugin(serialData, serialLength);
|
||||
obj->setPluginNamespace(mNamespace.c_str());
|
||||
return obj;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user