Add models benchmarks

This commit is contained in:
Marcos Luciano
2022-08-15 21:31:14 -03:00
parent c8a4a49f16
commit ab082fc292
2 changed files with 54 additions and 3 deletions

View File

@@ -4,7 +4,6 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
### Future updates
* Models benchmarks
* DeepStream tutorials
* YOLOX support
* YOLOv6 support
@@ -27,6 +26,7 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
* **PP-YOLOE support**
* **YOLOv7 support**
* **Optimized NMS** [#142](https://github.com/marcoslucianops/DeepStream-Yolo/issues/142)
* **Models benchmarks**
##
@@ -98,7 +98,58 @@ NVIDIA DeepStream SDK 6.1 / 6.0.1 / 6.0 configuration for YOLO models
### Benchmarks
New tests comming soon.
#### Config
```
board = NVIDIA Tesla V100 16GB (AWS: p3.2xlarge)
batch-size = 1
eval = val2017 (COCO)
sample = 1920x1080 video
```
**NOTE**: Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_box=1), YOLOv5 and YOLOR models.
#### NMS config
- Eval
```
nms-iou-threshold = 0.6 / 0.65 (YOLOv5, YOLOR, YOLOv7 PyTorch) / 0.7 (PP-YOLOE)
pre-cluster-threshold = 0.001
topk = 300
```
- Test
```
nms-iou-threshold = 0.45 / 0.7 (PP-YOLOE)
pre-cluster-threshold = 0.25
topk = 300
```
#### Results
**NOTE**: * = PyTorch
| DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(without display) |
|:------------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:--------------------------:|
| PP-YOLOE-x | FP16 | 640 | 0.506 | 0.681 | 0.551 | 116.54 |
| PP-YOLOE-l | FP16 | 640 | 0.498 | 0.674 | 0.545 | 187.93 |
| PP-YOLOE-m | FP16 | 640 | 0.476 | 0.646 | 0.522 | 257.42 |
| PP-YOLOE-s (400) | FP16 | 640 | 0.422 | 0.589 | 0.463 | 465.23 |
| YOLOv7* | FP16 | 640 | 0.476 | 0.660 | 0.518 | 237.32 |
| YOLOv7-Tiny Leaky* | FP16 | 640 | 0.345 | 0.516 | 0.372 | 611.24 |
| YOLOv7-Tiny Leaky* | FP16 | 416 | 0.328 | 0.492 | 0.348 | 633.81 |
| YOLOv5x6 6.1 | FP16 | 1280 | 0.508 | 0.683 | 0.554 | 54.88 |
| YOLOv5l6 6.1 | FP16 | 1280 | 0.494 | 0.668 | 0.540 | 87.86 |
| YOLOv5m6 6.1 | FP16 | 1280 | 0.469 | 0.644 | 0.514 | 142.68 |
| YOLOv5s6 6.1 | FP16 | 1280 | 0.399 | 0.581 | 0.438 | 271.19 |
| YOLOv5n6 6.1 | FP16 | 1280 | 0.317 | 0.487 | 0.344 | 392.20 |
| YOLOv5x 6.1 | FP16 | 640 | 0.470 | 0.652 | 0.513 | 152.99 |
| YOLOv5l 6.1 | FP16 | 640 | 0.454 | 0.636 | 0.496 | 247.60 |
| YOLOv5m 6.1 | FP16 | 640 | 0.421 | 0.604 | 0.458 | 375.06 |
| YOLOv5s 6.1 | FP16 | 640 | 0.344 | 0.528 | 0.371 | 602.44 |
| YOLOv5n 6.1 | FP16 | 640 | 0.247 | 0.413 | 0.256 | 629.04 |
##