Add YOLOR-P6 support

This commit is contained in:
Marcos Luciano
2022-02-14 15:38:12 -03:00
parent 9d118801be
commit a82f1b8662
7 changed files with 117 additions and 21 deletions

View File

@@ -61,6 +61,7 @@ SRCFILES:= nvdsinfer_yolo_engine.cpp \
layers/upsample_layer.cpp \ layers/upsample_layer.cpp \
layers/maxpool_layer.cpp \ layers/maxpool_layer.cpp \
layers/activation_layer.cpp \ layers/activation_layer.cpp \
layers/reorg_r_layer.cpp \
utils.cpp \ utils.cpp \
yolo.cpp \ yolo.cpp \
yoloForward.cu \ yoloForward.cu \

View File

@@ -3,7 +3,6 @@
* https://www.github.com/marcoslucianops * https://www.github.com/marcoslucianops
*/ */
#include <math.h>
#include "implicit_layer.h" #include "implicit_layer.h"
nvinfer1::ILayer* implicitLayer( nvinfer1::ILayer* implicitLayer(

View File

@@ -0,0 +1,62 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#include "reorg_r_layer.h"
nvinfer1::ILayer* reorgRLayer(
int layerIdx,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::Dims prevTensorDims = input->getDimensions();
nvinfer1::ISliceLayer *slice1 = network->addSlice(
*input,
nvinfer1::Dims3{0, 0, 0},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice1 != nullptr);
std::string slice1LayerName = "slice1_" + std::to_string(layerIdx);
slice1->setName(slice1LayerName.c_str());
nvinfer1::ISliceLayer *slice2 = network->addSlice(
*input,
nvinfer1::Dims3{0, 1, 0},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice2 != nullptr);
std::string slice2LayerName = "slice2_" + std::to_string(layerIdx);
slice2->setName(slice2LayerName.c_str());
nvinfer1::ISliceLayer *slice3 = network->addSlice(
*input,
nvinfer1::Dims3{0, 0, 1},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice3 != nullptr);
std::string slice3LayerName = "slice3_" + std::to_string(layerIdx);
slice3->setName(slice3LayerName.c_str());
nvinfer1::ISliceLayer *slice4 = network->addSlice(
*input,
nvinfer1::Dims3{0, 1, 1},
nvinfer1::Dims3{prevTensorDims.d[0], prevTensorDims.d[1] / 2, prevTensorDims.d[2] / 2},
nvinfer1::Dims3{1, 2, 2});
assert(slice4 != nullptr);
std::string slice4LayerName = "slice4_" + std::to_string(layerIdx);
slice4->setName(slice4LayerName.c_str());
std::vector<nvinfer1::ITensor*> concatInputs;
concatInputs.push_back (slice1->getOutput(0));
concatInputs.push_back (slice2->getOutput(0));
concatInputs.push_back (slice3->getOutput(0));
concatInputs.push_back (slice4->getOutput(0));
nvinfer1::IConcatenationLayer* concat =
network->addConcatenation(concatInputs.data(), concatInputs.size());
assert(concat != nullptr);
return concat;
}

View File

@@ -0,0 +1,20 @@
/*
* Created by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
#ifndef __REORG_R_LAYER_H__
#define __REORG_R_LAYER_H__
#include <map>
#include <vector>
#include <cassert>
#include "NvInfer.h"
nvinfer1::ILayer* reorgRLayer(
int layerIdx,
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network);
#endif

View File

@@ -299,6 +299,36 @@ NvDsInferStatus Yolo::buildYoloNetwork(
printLayerInfo(layerIndex, "maxpool", inputVol, outputVol, std::to_string(weightPtr)); printLayerInfo(layerIndex, "maxpool", inputVol, outputVol, std::to_string(weightPtr));
} }
else if (m_ConfigBlocks.at(i).at("type") == "reorg") {
if (m_NetworkType.find("yolor") != std::string::npos) {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = reorgRLayer(i, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "reorgR";
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
}
else {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg =
network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string layerName = "reorg_" + std::to_string(i);
reorg->setName(layerName.c_str());
previous = reorg->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(reorg->getOutput(0));
printLayerInfo(layerIndex, "reorg", inputVol, outputVol, std::to_string(weightPtr));
}
}
else if (m_ConfigBlocks.at(i).at("type") == "yolo") { else if (m_ConfigBlocks.at(i).at("type") == "yolo") {
uint model_type; uint model_type;
if (m_NetworkType.find("yolor") != std::string::npos) { if (m_NetworkType.find("yolor") != std::string::npos) {
@@ -391,22 +421,6 @@ NvDsInferStatus Yolo::buildYoloNetwork(
printLayerInfo(layerIndex, "region", inputVol, outputVol, std::to_string(weightPtr)); printLayerInfo(layerIndex, "region", inputVol, outputVol, std::to_string(weightPtr));
++outputTensorCount; ++outputTensorCount;
} }
else if (m_ConfigBlocks.at(i).at("type") == "reorg") {
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg =
network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string layerName = "reorg_" + std::to_string(i);
reorg->setName(layerName.c_str());
previous = reorg->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(reorg->getOutput(0));
printLayerInfo(layerIndex, "reorg", inputVol, outputVol, std::to_string(weightPtr));
}
else else
{ {

View File

@@ -34,6 +34,7 @@
#include "layers/route_layer.h" #include "layers/route_layer.h"
#include "layers/upsample_layer.h" #include "layers/upsample_layer.h"
#include "layers/maxpool_layer.h" #include "layers/maxpool_layer.h"
#include "layers/reorg_r_layer.h"
#include "nvdsinfer_custom_impl.h" #include "nvdsinfer_custom_impl.h"

View File

@@ -20,9 +20,9 @@ NVIDIA DeepStream SDK 6.0 configuration for YOLO models
* Support for convolutional groups * Support for convolutional groups
* Support for INT8 calibration * Support for INT8 calibration
* Support for non square models * Support for non square models
* Support for implicit and channel layers (YOLOR) * Support for reorg, implicit and channel layers (YOLOR)
* YOLOv5 6.0 native support * YOLOv5 6.0 native support
* Initial YOLOR native support * YOLOR native support
* **Models benchmarks** * **Models benchmarks**
## ##
@@ -99,6 +99,7 @@ NOTE: Used maintain-aspect-ratio=1 in config_infer file for YOLOv4 (with letter_
| DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(without display) | | DeepStream | Precision | Resolution | IoU=0.5:0.95 | IoU=0.5 | IoU=0.75 | FPS<br />(without display) |
|:------------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:--------------------------:| |:------------------:|:---------:|:----------:|:------------:|:-------:|:--------:|:--------------------------:|
| YOLOR-P6 | FP32 | 1280 | 0.478 | 0.663 | 0.519 | 5.53 |
| YOLOR-CSP-X* | FP32 | 640 | 0.473 | 0.664 | 0.513 | 7.59 | | YOLOR-CSP-X* | FP32 | 640 | 0.473 | 0.664 | 0.513 | 7.59 |
| YOLOR-CSP-X | FP32 | 640 | 0.470 | 0.661 | 0.507 | 7.52 | | YOLOR-CSP-X | FP32 | 640 | 0.470 | 0.661 | 0.507 | 7.52 |
| YOLOR-CSP* | FP32 | 640 | 0.459 | 0.652 | 0.496 | 13.28 | | YOLOR-CSP* | FP32 | 640 | 0.459 | 0.652 | 0.496 | 13.28 |
@@ -465,8 +466,6 @@ deepstream-app -c deepstream_app_config.txt
### YOLOR usage ### YOLOR usage
**NOTE**: For now, available only for YOLOR-CSP, YOLOR-CSP*, YOLOR-CSP-X and YOLOR-CSP-X*.
#### 1. Copy gen_wts_yolor.py from DeepStream-Yolo/utils to [yolor](https://github.com/WongKinYiu/yolor) folder #### 1. Copy gen_wts_yolor.py from DeepStream-Yolo/utils to [yolor](https://github.com/WongKinYiu/yolor) folder
#### 2. Open the yolor folder #### 2. Open the yolor folder