Add PP-YOLOE support

This commit is contained in:
Marcos Luciano
2022-07-24 18:00:47 -03:00
parent d09879d557
commit a3782ed65e
51 changed files with 1812 additions and 600 deletions

View File

@@ -47,6 +47,11 @@ namespace {
}
}
cudaError_t cudaYoloLayer_e(
const void* cls, const void* reg, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth, const uint& netHeight,
const uint& numOutputClasses, cudaStream_t stream);
cudaError_t cudaYoloLayer_r(
const void* input, void* d_indexes, void* d_scores, void* d_boxes, void* d_classes, void* countData,
const uint& batchSize, uint64_t& inputSize, uint64_t& outputSize, const float& scoreThreshold, const uint& netWidth,
@@ -88,34 +93,36 @@ YoloLayer::YoloLayer (const void* data, size_t length)
read(d, m_TopK);
read(d, m_ScoreThreshold);
uint yoloTensorsSize;
read(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
{
TensorInfo curYoloTensor;
read(d, curYoloTensor.gridSizeX);
read(d, curYoloTensor.gridSizeY);
read(d, curYoloTensor.numBBoxes);
read(d, curYoloTensor.scaleXY);
uint anchorsSize;
read(d, anchorsSize);
for (uint j = 0; j < anchorsSize; j++)
if (m_Type != 3) {
uint yoloTensorsSize;
read(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
{
float result;
read(d, result);
curYoloTensor.anchors.push_back(result);
}
TensorInfo curYoloTensor;
read(d, curYoloTensor.gridSizeX);
read(d, curYoloTensor.gridSizeY);
read(d, curYoloTensor.numBBoxes);
read(d, curYoloTensor.scaleXY);
uint maskSize;
read(d, maskSize);
for (uint j = 0; j < maskSize; j++)
{
int result;
read(d, result);
curYoloTensor.mask.push_back(result);
uint anchorsSize;
read(d, anchorsSize);
for (uint j = 0; j < anchorsSize; j++)
{
float result;
read(d, result);
curYoloTensor.anchors.push_back(result);
}
uint maskSize;
read(d, maskSize);
for (uint j = 0; j < maskSize; j++)
{
int result;
read(d, result);
curYoloTensor.mask.push_back(result);
}
m_YoloTensors.push_back(curYoloTensor);
}
m_YoloTensors.push_back(curYoloTensor);
}
kNUM_CLASSES = m_NumClasses;
@@ -147,9 +154,9 @@ YoloLayer::getOutputDimensions(
{
assert(index < 3);
if (index == 0) {
return nvinfer1::Dims3(m_TopK, 1, 4);
return nvinfer1::Dims{3, {static_cast<int>(m_TopK), 1, 4}};
}
return nvinfer1::DimsHW(m_TopK, m_NumClasses);
return nvinfer1::Dims{2, {static_cast<int>(m_TopK), static_cast<int>(m_NumClasses)}};
}
bool YoloLayer::supportsFormat (
@@ -173,95 +180,106 @@ int32_t YoloLayer::enqueue (
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
void* countData = workspace;
void* bboxData = outputs[0];
void* scoreData = outputs[1];
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)bboxData, 0, sizeof(float) * m_TopK * 4 * batchSize, stream));
CUDA_CHECK(cudaMemsetAsync((float*)scoreData, 0, sizeof(float) * m_TopK * m_NumClasses * batchSize, stream));
void* countData;
CUDA_CHECK(cudaMalloc(&countData, sizeof(int) * batchSize));
CUDA_CHECK(cudaMemsetAsync((int*)countData, 0, sizeof(int) * batchSize, stream));
void* d_indexes;
CUDA_CHECK(cudaMallocHost(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
CUDA_CHECK(cudaMalloc(&d_indexes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((int*)d_indexes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
void* d_scores;
CUDA_CHECK(cudaMallocHost(&d_scores, sizeof(float) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMalloc(&d_scores, sizeof(float) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_scores, 0, sizeof(float) * m_OutputSize * batchSize, stream));
void* d_boxes;
CUDA_CHECK(cudaMallocHost(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
CUDA_CHECK(cudaMalloc(&d_boxes, sizeof(float) * m_OutputSize * 4 * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_boxes, 0, sizeof(float) * m_OutputSize * 4 * batchSize, stream));
void* d_classes;
CUDA_CHECK(cudaMallocHost(&d_classes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMalloc(&d_classes, sizeof(int) * m_OutputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)d_classes, 0, sizeof(int) * m_OutputSize * batchSize, stream));
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i)
if (m_Type == 3)
{
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
CUDA_CHECK(cudaYoloLayer_e(
inputs[0], inputs[1], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, m_NumClasses, stream));
}
else
{
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i)
{
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
uint numBBoxes = curYoloTensor.numBBoxes;
float scaleXY = curYoloTensor.scaleXY;
uint gridSizeX = curYoloTensor.gridSizeX;
uint gridSizeY = curYoloTensor.gridSizeY;
std::vector<float> anchors = curYoloTensor.anchors;
std::vector<int> mask = curYoloTensor.mask;
uint numBBoxes = curYoloTensor.numBBoxes;
float scaleXY = curYoloTensor.scaleXY;
uint gridSizeX = curYoloTensor.gridSizeX;
uint gridSizeY = curYoloTensor.gridSizeY;
std::vector<float> anchors = curYoloTensor.anchors;
std::vector<int> mask = curYoloTensor.mask;
void* v_anchors;
void* v_mask;
if (anchors.size() > 0) {
float* f_anchors = anchors.data();
CUDA_CHECK(cudaMallocHost(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpy(v_anchors, f_anchors, sizeof(float) * anchors.size(), cudaMemcpyHostToDevice));
}
if (mask.size() > 0) {
int* f_mask = mask.data();
CUDA_CHECK(cudaMallocHost(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpy(v_mask, f_mask, sizeof(int) * mask.size(), cudaMemcpyHostToDevice));
}
void* v_anchors;
void* v_mask;
if (anchors.size() > 0) {
float* f_anchors = anchors.data();
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpy(v_anchors, f_anchors, sizeof(float) * anchors.size(), cudaMemcpyHostToDevice));
}
if (mask.size() > 0) {
int* f_mask = mask.data();
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpy(v_mask, f_mask, sizeof(int) * mask.size(), cudaMemcpyHostToDevice));
}
uint64_t inputSize = gridSizeX * gridSizeY * (numBBoxes * (4 + 1 + m_NumClasses));
uint64_t inputSize = gridSizeX * gridSizeY * (numBBoxes * (4 + 1 + m_NumClasses));
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CUDA_CHECK(cudaYoloLayer_r(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, 2.0, v_anchors,
v_mask, stream));
}
else if (m_Type == 1) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CUDA_CHECK(cudaYoloLayer_r(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
v_anchors, v_mask, stream));
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, 2.0, v_anchors,
v_mask, stream));
}
else if (m_Type == 1) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
v_anchors, v_mask, stream));
}
else {
CUDA_CHECK(cudaYoloLayer(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
v_anchors, v_mask, stream));
}
}
else {
CUDA_CHECK(cudaYoloLayer(
inputs[i], d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY,
v_anchors, v_mask, stream));
void* softmax;
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaRegionLayer(
inputs[i], softmax, d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors,
stream));
CUDA_CHECK(cudaFree(softmax));
}
}
else {
void* softmax;
CUDA_CHECK(cudaMallocHost(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaRegionLayer(
inputs[i], softmax, d_indexes, d_scores, d_boxes, d_classes, countData, batchSize, inputSize, m_OutputSize,
m_ScoreThreshold, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors,
stream));
CUDA_CHECK(cudaFreeHost(softmax));
}
if (anchors.size() > 0) {
CUDA_CHECK(cudaFreeHost(v_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFreeHost(v_mask));
if (anchors.size() > 0) {
CUDA_CHECK(cudaFree(v_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFree(v_mask));
}
}
}
@@ -269,10 +287,11 @@ int32_t YoloLayer::enqueue (
d_indexes, d_scores, d_boxes, d_classes, bboxData, scoreData, countData, batchSize, m_OutputSize, m_TopK,
m_NumClasses, stream));
CUDA_CHECK(cudaFreeHost(d_indexes));
CUDA_CHECK(cudaFreeHost(d_scores));
CUDA_CHECK(cudaFreeHost(d_boxes));
CUDA_CHECK(cudaFreeHost(d_classes));
CUDA_CHECK(cudaFree(countData));
CUDA_CHECK(cudaFree(d_indexes));
CUDA_CHECK(cudaFree(d_scores));
CUDA_CHECK(cudaFree(d_boxes));
CUDA_CHECK(cudaFree(d_classes));
return 0;
}
@@ -290,18 +309,20 @@ size_t YoloLayer::getSerializationSize() const noexcept
totalSize += sizeof(m_TopK);
totalSize += sizeof(m_ScoreThreshold);
uint yoloTensorsSize = m_YoloTensors.size();
totalSize += sizeof(yoloTensorsSize);
if (m_Type != 3) {
uint yoloTensorsSize = m_YoloTensors.size();
totalSize += sizeof(yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
{
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
totalSize += sizeof(curYoloTensor.gridSizeX);
totalSize += sizeof(curYoloTensor.gridSizeY);
totalSize += sizeof(curYoloTensor.numBBoxes);
totalSize += sizeof(curYoloTensor.scaleXY);
totalSize += sizeof(uint) + sizeof(curYoloTensor.anchors[0]) * curYoloTensor.anchors.size();
totalSize += sizeof(uint) + sizeof(curYoloTensor.mask[0]) * curYoloTensor.mask.size();
for (uint i = 0; i < yoloTensorsSize; ++i)
{
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
totalSize += sizeof(curYoloTensor.gridSizeX);
totalSize += sizeof(curYoloTensor.gridSizeY);
totalSize += sizeof(curYoloTensor.numBBoxes);
totalSize += sizeof(curYoloTensor.scaleXY);
totalSize += sizeof(uint) + sizeof(curYoloTensor.anchors[0]) * curYoloTensor.anchors.size();
totalSize += sizeof(uint) + sizeof(curYoloTensor.mask[0]) * curYoloTensor.mask.size();
}
}
return totalSize;
@@ -320,28 +341,30 @@ void YoloLayer::serialize(void* buffer) const noexcept
write(d, m_TopK);
write(d, m_ScoreThreshold);
uint yoloTensorsSize = m_YoloTensors.size();
write(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
{
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
write(d, curYoloTensor.gridSizeX);
write(d, curYoloTensor.gridSizeY);
write(d, curYoloTensor.numBBoxes);
write(d, curYoloTensor.scaleXY);
uint anchorsSize = curYoloTensor.anchors.size();
write(d, anchorsSize);
for (uint j = 0; j < anchorsSize; ++j)
if (m_Type != 3) {
uint yoloTensorsSize = m_YoloTensors.size();
write(d, yoloTensorsSize);
for (uint i = 0; i < yoloTensorsSize; ++i)
{
write(d, curYoloTensor.anchors[j]);
}
const TensorInfo& curYoloTensor = m_YoloTensors.at(i);
write(d, curYoloTensor.gridSizeX);
write(d, curYoloTensor.gridSizeY);
write(d, curYoloTensor.numBBoxes);
write(d, curYoloTensor.scaleXY);
uint maskSize = curYoloTensor.mask.size();
write(d, maskSize);
for (uint j = 0; j < maskSize; ++j)
{
write(d, curYoloTensor.mask[j]);
uint anchorsSize = curYoloTensor.anchors.size();
write(d, anchorsSize);
for (uint j = 0; j < anchorsSize; ++j)
{
write(d, curYoloTensor.anchors[j]);
}
uint maskSize = curYoloTensor.mask.size();
write(d, maskSize);
for (uint j = 0; j < maskSize; ++j)
{
write(d, curYoloTensor.mask[j]);
}
}
}
}