Add PP-YOLOE support

This commit is contained in:
Marcos Luciano
2022-07-24 18:00:47 -03:00
parent d09879d557
commit a3782ed65e
51 changed files with 1812 additions and 600 deletions

View File

@@ -158,7 +158,6 @@ NvDsInferStatus Yolo::parseModel(nvinfer1::INetworkDefinition& network) {
NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition& network)
{
int weightPtr = 0;
int channels = m_InputC;
std::string weightsType;
if (m_WtsFilePath.find(".weights") != std::string::npos)
@@ -172,81 +171,64 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
else if (m_NetworkType.find("yolor") != std::string::npos)
eps = 1.0e-4;
nvinfer1::ITensor* data =
network.addInput(m_InputBlobName.c_str(), nvinfer1::DataType::kFLOAT,
nvinfer1::Dims3{static_cast<int>(m_InputC),
static_cast<int>(m_InputH), static_cast<int>(m_InputW)});
nvinfer1::ITensor* data = network.addInput(
m_InputBlobName.c_str(), nvinfer1::DataType::kFLOAT,
nvinfer1::Dims{3, {static_cast<int>(m_InputC), static_cast<int>(m_InputH), static_cast<int>(m_InputW)}});
assert(data != nullptr && data->getDimensions().nbDims > 0);
nvinfer1::ITensor* previous = data;
std::vector<nvinfer1::ITensor*> tensorOutputs;
std::vector<nvinfer1::ITensor*> yoloInputs;
uint inputYoloCount = 0;
nvinfer1::ITensor* yoloTensorInputs[m_YoloCount];
uint yoloCountInputs = 0;
int modelType = -1;
for (uint i = 0; i < m_ConfigBlocks.size(); ++i)
{
assert(getNumChannels(previous) == channels);
std::string layerIndex = "(" + std::to_string(tensorOutputs.size()) + ")";
if (m_ConfigBlocks.at(i).at("type") == "net")
printLayerInfo("", "layer", " input", " output", "weightPtr");
printLayerInfo("", "Layer", "Input Shape", "Output Shape", "WeightPtr");
else if (m_ConfigBlocks.at(i).at("type") == "convolutional")
{
int channels = getNumChannels(previous);
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = convolutionalLayer(
previous = convolutionalLayer(
i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, channels, eps, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "conv_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = "conv_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "batchnorm")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = batchnormLayer(
previous = batchnormLayer(
i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, weightsType, eps, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "bn_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = "batchnorm_" + m_ConfigBlocks.at(i).at("activation");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "implicit_add" || m_ConfigBlocks.at(i).at("type") == "implicit_mul")
{
std::string type;
if (m_ConfigBlocks.at(i).at("type") == "implicit_add")
type = "add";
else if (m_ConfigBlocks.at(i).at("type") == "implicit_mul")
type = "mul";
assert(m_ConfigBlocks.at(i).find("filters") != m_ConfigBlocks.at(i).end());
int filters = std::stoi(m_ConfigBlocks.at(i).at("filters"));
nvinfer1::ILayer* out = implicitLayer(filters, weights, m_TrtWeights, weightPtr, &network);
previous = out->getOutput(0);
previous = implicitLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, &network);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "implicit_" + type;
printLayerInfo(layerIndex, layerType, " -", outputVol, std::to_string(weightPtr));
std::string layerName = m_ConfigBlocks.at(i).at("type");
printLayerInfo(layerIndex, layerName, "-", outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "shift_channels" || m_ConfigBlocks.at(i).at("type") == "control_channels")
else if (m_ConfigBlocks.at(i).at("type") == "shift_channels" ||
m_ConfigBlocks.at(i).at("type") == "control_channels")
{
std::string type;
if (m_ConfigBlocks.at(i).at("type") == "shift_channels")
type = "shift";
else if (m_ConfigBlocks.at(i).at("type") == "control_channels")
type = "control";
assert(m_ConfigBlocks.at(i).find("from") != m_ConfigBlocks.at(i).end());
int from = stoi(m_ConfigBlocks.at(i).at("from"));
if (from > 0)
@@ -254,140 +236,193 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
assert((i - 2 >= 0) && (i - 2 < tensorOutputs.size()));
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
nvinfer1::ILayer* out = channelsLayer(type, previous, tensorOutputs[i + from - 1], &network);
previous = out->getOutput(0);
std::string inputVol = dimsToString(previous->getDimensions());
previous = channelsLayer(i, m_ConfigBlocks.at(i), previous, tensorOutputs[i + from - 1], &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = type + "_channels" + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerType, " -", outputVol, " -");
}
else if (m_ConfigBlocks.at(i).at("type") == "dropout")
{
// Skip dropout layer
assert(previous != nullptr);
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "dropout", " -", " -", " -");
std::string layerName = m_ConfigBlocks.at(i).at("type") + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "shortcut")
{
assert(m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end());
assert(m_ConfigBlocks.at(i).find("from") != m_ConfigBlocks.at(i).end());
std::string activation = m_ConfigBlocks.at(i).at("activation");
int from = stoi(m_ConfigBlocks.at(i).at("from"));
if (from > 0)
from = from - i + 1;
assert((i - 2 >= 0) && (i - 2 < tensorOutputs.size()));
assert((i + from - 1 >= 0) && (i + from - 1 < tensorOutputs.size()));
assert(i + from - 1 < i - 2);
std::string mode = "add";
if (m_ConfigBlocks.at(i).find("mode") != m_ConfigBlocks.at(i).end())
mode = m_ConfigBlocks.at(i).at("mode");
std::string activation = "linear";
if (m_ConfigBlocks.at(i).find("activation") != m_ConfigBlocks.at(i).end())
activation = m_ConfigBlocks.at(i).at("activation");
std::string inputVol = dimsToString(previous->getDimensions());
std::string shortcutVol = dimsToString(tensorOutputs[i + from - 1]->getDimensions());
nvinfer1::ILayer* out = shortcutLayer(i, activation, inputVol, shortcutVol, previous, tensorOutputs[i + from - 1], &network);
previous = out->getOutput(0);
previous = shortcutLayer(
i, mode, activation, inputVol, shortcutVol, m_ConfigBlocks.at(i), previous, tensorOutputs[i + from - 1],
&network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "shortcut_" + m_ConfigBlocks.at(i).at("activation") + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerType, " -", outputVol, " -");
if (inputVol != shortcutVol) {
std::string layerName = "shortcut_" + mode + "_" + activation + ": " + std::to_string(i + from - 1);
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
if (mode == "add" && inputVol != shortcutVol)
std::cout << inputVol << " +" << shortcutVol << std::endl;
}
}
else if (m_ConfigBlocks.at(i).at("type") == "route")
{
assert(m_ConfigBlocks.at(i).find("layers") != m_ConfigBlocks.at(i).end());
nvinfer1::ILayer* out = routeLayer(i, m_ConfigBlocks.at(i), tensorOutputs, &network);
previous = out->getOutput(0);
std::string layers;
previous = routeLayer(i, layers, m_ConfigBlocks.at(i), tensorOutputs, &network);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "route", " -", outputVol, std::to_string(weightPtr));
std::string layerName = "route: " + layers;
printLayerInfo(layerIndex, layerName, "-", outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "upsample")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = upsampleLayer(i - 1, m_ConfigBlocks[i], previous, &network);
previous = out->getOutput(0);
previous = upsampleLayer(i, m_ConfigBlocks[i], previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "upsample", inputVol, outputVol, " -");
std::string layerName = "upsample";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "maxpool")
else if (m_ConfigBlocks.at(i).at("type") == "maxpool" || m_ConfigBlocks.at(i).at("type") == "avgpool")
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = maxpoolLayer(i, m_ConfigBlocks.at(i), previous, &network);
previous = out->getOutput(0);
previous = poolingLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
printLayerInfo(layerIndex, "maxpool", inputVol, outputVol, std::to_string(weightPtr));
std::string layerName = m_ConfigBlocks.at(i).at("type");
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reorg")
{
if (m_NetworkType.find("yolov5") != std::string::npos || m_NetworkType.find("yolor") != std::string::npos)
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::ILayer* out = reorgV5Layer(i, previous, &network);
previous = out->getOutput(0);
assert(previous != nullptr);
channels = getNumChannels(previous);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerType = "reorgV5";
printLayerInfo(layerIndex, layerType, inputVol, outputVol, std::to_string(weightPtr));
}
else
{
std::string inputVol = dimsToString(previous->getDimensions());
nvinfer1::IPluginV2* reorgPlugin = createReorgPlugin(2);
assert(reorgPlugin != nullptr);
nvinfer1::IPluginV2Layer* reorg =
network.addPluginV2(&previous, 1, *reorgPlugin);
assert(reorg != nullptr);
std::string layerName = "reorg_" + std::to_string(i);
reorg->setName(layerName.c_str());
previous = reorg->getOutput(0);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(reorg->getOutput(0));
printLayerInfo(layerIndex, "reorg", inputVol, outputVol, std::to_string(weightPtr));
}
std::string inputVol = dimsToString(previous->getDimensions());
previous = reorgLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "reorg";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reduce")
{
std::string inputVol = dimsToString(previous->getDimensions());
previous = reduceLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "reduce";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "shuffle")
{
std::string layer;
std::string inputVol = dimsToString(previous->getDimensions());
previous = shuffleLayer(i, layer, m_ConfigBlocks.at(i), previous, tensorOutputs, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "shuffle: " + layer;
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "softmax")
{
std::string inputVol = dimsToString(previous->getDimensions());
previous = softmaxLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
std::string layerName = "softmax";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "yolo" || m_ConfigBlocks.at(i).at("type") == "region")
{
if (m_ConfigBlocks.at(i).at("type") == "yolo")
{
if (m_NetworkType.find("yolor") != std::string::npos)
modelType = 2;
else
modelType = 1;
}
else
modelType = 0;
std::string layerName = modelType != 0 ? "yolo_" + std::to_string(i) : "region_" + std::to_string(i);
std::string blobName = modelType != 0 ? "yolo_" + std::to_string(i) : "region_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(inputYoloCount);
curYoloTensor.blobName = layerName;
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.gridSizeX = prevTensorDims.d[2];
curYoloTensor.gridSizeY = prevTensorDims.d[1];
std::string inputVol = dimsToString(previous->getDimensions());
channels = getNumChannels(previous);
tensorOutputs.push_back(previous);
yoloInputs.push_back(previous);
++inputYoloCount;
printLayerInfo(layerIndex, modelType != 0 ? "yolo" : "region", inputVol, " -", " -");
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = modelType != 0 ? "yolo" : "region";
printLayerInfo(layerIndex, layerName, inputVol, "-", "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "cls")
{
modelType = 3;
std::string blobName = "cls_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
m_NumClasses = prevTensorDims.d[0];
std::string inputVol = dimsToString(previous->getDimensions());
previous = clsLayer(i, m_ConfigBlocks.at(i), previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "cls";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, "-");
}
else if (m_ConfigBlocks.at(i).at("type") == "reg")
{
modelType = 3;
std::string blobName = "reg_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[1];
std::string inputVol = dimsToString(previous->getDimensions());
previous = regLayer(i, m_ConfigBlocks.at(i), weights, m_TrtWeights, weightPtr, previous, &network);
assert(previous != nullptr);
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "reg";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else
@@ -403,17 +438,18 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
assert(0);
}
if (m_YoloCount == inputYoloCount)
if (m_YoloCount == yoloCountInputs)
{
assert((modelType != -1) && "\nCould not determine model type");
nvinfer1::ITensor* yoloInputTensors[inputYoloCount];
uint64_t outputSize = 0;
for (uint j = 0; j < inputYoloCount; ++j)
for (uint j = 0; j < yoloCountInputs; ++j)
{
yoloInputTensors[j] = yoloInputs[j];
TensorInfo& curYoloTensor = m_YoloTensors.at(j);
outputSize += curYoloTensor.gridSizeX * curYoloTensor.gridSizeY * curYoloTensor.numBBoxes;
if (modelType == 3)
outputSize = curYoloTensor.numBBoxes;
else
outputSize += curYoloTensor.gridSizeX * curYoloTensor.gridSizeY * curYoloTensor.numBBoxes;
}
if (m_TopK > outputSize) {
@@ -422,21 +458,15 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
assert(0);
}
std::string layerName = "yolo";
nvinfer1::IPluginV2* yoloPlugin = new YoloLayer(
m_InputW, m_InputH, m_NumClasses, m_NewCoords, m_YoloTensors, outputSize, modelType, m_TopK,
m_ScoreThreshold);
m_InputW, m_InputH, m_NumClasses, m_NewCoords, m_YoloTensors, outputSize, modelType, m_TopK, m_ScoreThreshold);
assert(yoloPlugin != nullptr);
nvinfer1::IPluginV2Layer* yolo = network.addPluginV2(yoloInputTensors, inputYoloCount, *yoloPlugin);
nvinfer1::IPluginV2Layer* yolo = network.addPluginV2(yoloTensorInputs, m_YoloCount, *yoloPlugin);
assert(yolo != nullptr);
yolo->setName(layerName.c_str());
previous = yolo->getOutput(0);
assert(previous != nullptr);
previous->setName(layerName.c_str());
tensorOutputs.push_back(yolo->getOutput(0));
std::string yoloLayerName = "yolo";
yolo->setName(yoloLayerName.c_str());
nvinfer1::ITensor* yoloTensors[] = {yolo->getOutput(0), yolo->getOutput(1)};
std::string outputVol = dimsToString(previous->getDimensions());
nvinfer1::ITensor* yoloTensorOutputs[] = {yolo->getOutput(0), yolo->getOutput(1)};
nvinfer1::plugin::NMSParameters nmsParams;
nmsParams.shareLocation = true;
@@ -448,28 +478,28 @@ NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::IN
nmsParams.iouThreshold = m_IouThreshold;
nmsParams.isNormalized = false;
layerName = "batchedNMS";
std::string nmslayerName = "batchedNMS";
nvinfer1::IPluginV2* batchedNMS = createBatchedNMSPlugin(nmsParams);
nvinfer1::IPluginV2Layer* nms = network.addPluginV2(yoloTensors, 2, *batchedNMS);
nms->setName(layerName.c_str());
nvinfer1::IPluginV2Layer* nms = network.addPluginV2(yoloTensorOutputs, 2, *batchedNMS);
nms->setName(nmslayerName.c_str());
nvinfer1::ITensor* num_detections = nms->getOutput(0);
layerName = "num_detections";
num_detections->setName(layerName.c_str());
nmslayerName = "num_detections";
num_detections->setName(nmslayerName.c_str());
nvinfer1::ITensor* nmsed_boxes = nms->getOutput(1);
layerName = "nmsed_boxes";
nmsed_boxes->setName(layerName.c_str());
nmslayerName = "nmsed_boxes";
nmsed_boxes->setName(nmslayerName.c_str());
nvinfer1::ITensor* nmsed_scores = nms->getOutput(2);
layerName = "nmsed_scores";
nmsed_scores->setName(layerName.c_str());
nmslayerName = "nmsed_scores";
nmsed_scores->setName(nmslayerName.c_str());
nvinfer1::ITensor* nmsed_classes = nms->getOutput(3);
layerName = "nmsed_classes";
nmsed_classes->setName(layerName.c_str());
nmslayerName = "nmsed_classes";
nmsed_classes->setName(nmslayerName.c_str());
network.markOutput(*num_detections);
network.markOutput(*nmsed_boxes);
network.markOutput(*nmsed_scores);
network.markOutput(*nmsed_classes);
printLayerInfo("", "batched_nms", " -", outputVol, " -");
printLayerInfo("", "batched_nms", "-", "-", "-");
}
else {
std::cout << "\nError in yolo cfg file" << std::endl;
@@ -620,6 +650,12 @@ void Yolo::parseConfigBlocks()
m_YoloTensors.push_back(outputTensor);
}
else if ((block.at("type") == "cls") || (block.at("type") == "reg"))
{
++m_YoloCount;
TensorInfo outputTensor;
m_YoloTensors.push_back(outputTensor);
}
}
}
@@ -640,9 +676,7 @@ void Yolo::parseConfigNMSBlocks()
void Yolo::destroyNetworkUtils()
{
for (uint i = 0; i < m_TrtWeights.size(); ++i)
{
if (m_TrtWeights[i].count > 0)
free(const_cast<void*>(m_TrtWeights[i].values));
}
m_TrtWeights.clear();
}