Add PP-YOLOE support

This commit is contained in:
Marcos Luciano
2022-07-24 18:00:47 -03:00
parent d09879d557
commit a3782ed65e
51 changed files with 1812 additions and 600 deletions

View File

@@ -6,7 +6,7 @@
#include <math.h>
#include "convolutional_layer.h"
nvinfer1::ILayer* convolutionalLayer(
nvinfer1::ITensor* convolutionalLayer(
int layerIdx,
std::map<std::string, std::string>& block,
std::vector<float>& weights,
@@ -18,6 +18,8 @@ nvinfer1::ILayer* convolutionalLayer(
nvinfer1::ITensor* input,
nvinfer1::INetworkDefinition* network)
{
nvinfer1::ITensor* output;
assert(block.at("type") == "convolutional");
assert(block.find("filters") != block.end());
assert(block.find("pad") != block.end());
@@ -40,14 +42,10 @@ nvinfer1::ILayer* convolutionalLayer(
int groups = 1;
if (block.find("groups") != block.end())
{
groups = std::stoi(block.at("groups"));
}
if (block.find("bias") != block.end())
{
bias = std::stoi(block.at("bias"));
}
int pad;
if (padding)
@@ -63,7 +61,8 @@ nvinfer1::ILayer* convolutionalLayer(
nvinfer1::Weights convWt{nvinfer1::DataType::kFLOAT, nullptr, size};
nvinfer1::Weights convBias{nvinfer1::DataType::kFLOAT, nullptr, bias};
if (weightsType == "weights") {
if (weightsType == "weights")
{
if (batchNormalize == false)
{
float* val;
@@ -120,7 +119,8 @@ nvinfer1::ILayer* convolutionalLayer(
trtWeights.push_back(convBias);
}
}
else {
else
{
if (batchNormalize == false)
{
float* val = new float[size];
@@ -177,20 +177,18 @@ nvinfer1::ILayer* convolutionalLayer(
}
}
nvinfer1::IConvolutionLayer* conv = network->addConvolutionNd(
*input, filters, nvinfer1::DimsHW{kernelSize, kernelSize}, convWt, convBias);
nvinfer1::IConvolutionLayer* conv
= network->addConvolutionNd(*input, filters, nvinfer1::Dims{2, {kernelSize, kernelSize}}, convWt, convBias);
assert(conv != nullptr);
std::string convLayerName = "conv_" + std::to_string(layerIdx);
conv->setName(convLayerName.c_str());
conv->setStrideNd(nvinfer1::DimsHW{stride, stride});
conv->setPaddingNd(nvinfer1::DimsHW{pad, pad});
conv->setStrideNd(nvinfer1::Dims{2, {stride, stride}});
conv->setPaddingNd(nvinfer1::Dims{2, {pad, pad}});
if (block.find("groups") != block.end())
{
conv->setNbGroups(groups);
}
nvinfer1::ILayer* output = conv;
output = conv->getOutput(0);
if (batchNormalize == true)
{
@@ -200,36 +198,28 @@ nvinfer1::ILayer* convolutionalLayer(
nvinfer1::Weights power{nvinfer1::DataType::kFLOAT, nullptr, size};
float* shiftWt = new float[size];
for (int i = 0; i < size; ++i)
{
shiftWt[i]
= bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
}
shiftWt[i] = bnBiases.at(i) - ((bnRunningMean.at(i) * bnWeights.at(i)) / bnRunningVar.at(i));
shift.values = shiftWt;
float* scaleWt = new float[size];
for (int i = 0; i < size; ++i)
{
scaleWt[i] = bnWeights.at(i) / bnRunningVar[i];
}
scale.values = scaleWt;
float* powerWt = new float[size];
for (int i = 0; i < size; ++i)
{
powerWt[i] = 1.0;
}
power.values = powerWt;
trtWeights.push_back(shift);
trtWeights.push_back(scale);
trtWeights.push_back(power);
nvinfer1::IScaleLayer* bn = network->addScale(
*output->getOutput(0), nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(bn != nullptr);
std::string bnLayerName = "batch_norm_" + std::to_string(layerIdx);
bn->setName(bnLayerName.c_str());
output = bn;
nvinfer1::IScaleLayer* batchnorm = network->addScale(*output, nvinfer1::ScaleMode::kCHANNEL, shift, scale, power);
assert(batchnorm != nullptr);
std::string batchnormLayerName = "batchnorm_" + std::to_string(layerIdx);
batchnorm->setName(batchnormLayerName.c_str());
output = batchnorm->getOutput(0);
}
output = activationLayer(layerIdx, activation, output, output->getOutput(0), network);
output = activationLayer(layerIdx, activation, output, network);
assert(output != nullptr);
return output;