Add RT-DETR Paddle
This commit is contained in:
@@ -29,7 +29,8 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
|
|||||||
* Dynamic batch-size for Darknet and ONNX exported models
|
* Dynamic batch-size for Darknet and ONNX exported models
|
||||||
* INT8 calibration (PTQ) for Darknet and ONNX exported models
|
* INT8 calibration (PTQ) for Darknet and ONNX exported models
|
||||||
* New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
|
* New output structure (fix wrong output on DeepStream < 6.2) - it need to export the ONNX model with the new export file, generate the TensorRT engine again with the updated files, and use the new config_infer_primary file according to your model
|
||||||
* **RT-DETR (https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch)**
|
* **RT-DETR PyTorch (https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch)**
|
||||||
|
* **RT-DETR Paddle (https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_paddle)**
|
||||||
* **RT-DETR Ultralytics (https://docs.ultralytics.com/models/rtdetr)**
|
* **RT-DETR Ultralytics (https://docs.ultralytics.com/models/rtdetr)**
|
||||||
|
|
||||||
##
|
##
|
||||||
@@ -53,7 +54,8 @@ NVIDIA DeepStream SDK 6.3 / 6.2 / 6.1.1 / 6.1 / 6.0.1 / 6.0 / 5.1 configuration
|
|||||||
* [DAMO-YOLO usage](docs/DAMOYOLO.md)
|
* [DAMO-YOLO usage](docs/DAMOYOLO.md)
|
||||||
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
* [PP-YOLOE / PP-YOLOE+ usage](docs/PPYOLOE.md)
|
||||||
* [YOLO-NAS usage](docs/YOLONAS.md)
|
* [YOLO-NAS usage](docs/YOLONAS.md)
|
||||||
* [RT-DETR usage](docs/RTDETR.md)
|
* [RT-DETR PyTorch usage](docs/RTDETR_PyTorch.md)
|
||||||
|
* [RT-DETR Paddle usage](docs/RTDETR_Paddle.md)
|
||||||
* [RT-DETR Ultralytics usage](docs/RTDETR_Ultralytics.md)
|
* [RT-DETR Ultralytics usage](docs/RTDETR_Ultralytics.md)
|
||||||
* [Using your custom model](docs/customModels.md)
|
* [Using your custom model](docs/customModels.md)
|
||||||
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
|
* [Multiple YOLO GIEs](docs/multipleGIEs.md)
|
||||||
|
|||||||
@@ -14,7 +14,7 @@
|
|||||||
|
|
||||||
#### 1. Download the PaddleDetection repo and install the requirements
|
#### 1. Download the PaddleDetection repo and install the requirements
|
||||||
|
|
||||||
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/docs/tutorials/INSTALL.md
|
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.7/docs/tutorials/INSTALL.md
|
||||||
|
|
||||||
**NOTE**: It is recommended to use Python virtualenv.
|
**NOTE**: It is recommended to use Python virtualenv.
|
||||||
|
|
||||||
|
|||||||
179
docs/RTDETR_Paddle.md
Normal file
179
docs/RTDETR_Paddle.md
Normal file
@@ -0,0 +1,179 @@
|
|||||||
|
# RT-DETR Paddle usage
|
||||||
|
|
||||||
|
**NOTE**: https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_paddle version.
|
||||||
|
|
||||||
|
* [Convert model](#convert-model)
|
||||||
|
* [Compile the lib](#compile-the-lib)
|
||||||
|
* [Edit the config_infer_primary_rtdetr file](#edit-the-config_infer_primary_rtdetr-file)
|
||||||
|
* [Edit the deepstream_app_config file](#edit-the-deepstream_app_config-file)
|
||||||
|
* [Testing the model](#testing-the-model)
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Convert model
|
||||||
|
|
||||||
|
#### 1. Download the PaddleDetection repo and install the requirements
|
||||||
|
|
||||||
|
https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.7/docs/tutorials/INSTALL.md
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone https://github.com/lyuwenyu/RT-DETR.git
|
||||||
|
cd RT-DETR/rtdetr_paddle
|
||||||
|
pip3 install -r requirements.txt
|
||||||
|
pip3 install onnx onnxsim onnxruntime paddle2onnx
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: It is recommended to use Python virtualenv.
|
||||||
|
|
||||||
|
#### 2. Copy conversor
|
||||||
|
|
||||||
|
Copy the `export_rtdetr_paddle.py` file from `DeepStream-Yolo/utils` directory to the `RT-DETR/rtdetr_paddle` folder.
|
||||||
|
|
||||||
|
#### 3. Download the model
|
||||||
|
|
||||||
|
Download the `pdparams` file from [RT-DETR Paddle](https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_paddle) releases (example for RT-DETR-R50)
|
||||||
|
|
||||||
|
```
|
||||||
|
wget https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: You can use your custom model.
|
||||||
|
|
||||||
|
#### 4. Convert model
|
||||||
|
|
||||||
|
Generate the ONNX model file (example for RT-DETR-R50)
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 export_rtdetr_paddle.py -w rtdetr_r50vd_6x_coco.pdparams -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml --dynamic
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To simplify the ONNX model (DeepStream >= 6.0)
|
||||||
|
|
||||||
|
```
|
||||||
|
--simplify
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To use dynamic batch-size (DeepStream >= 6.1)
|
||||||
|
|
||||||
|
```
|
||||||
|
--dynamic
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: To use static batch-size (example for batch-size = 4)
|
||||||
|
|
||||||
|
```
|
||||||
|
--batch 4
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: If you are using the DeepStream 5.1, remove the `--dynamic` arg and use opset 12 or lower. The default opset is 16.
|
||||||
|
|
||||||
|
```
|
||||||
|
--opset 12
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5. Copy generated files
|
||||||
|
|
||||||
|
Copy the generated ONNX model file and labels.txt file (if generated) to the `DeepStream-Yolo` folder.
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Compile the lib
|
||||||
|
|
||||||
|
Open the `DeepStream-Yolo` folder and compile the lib
|
||||||
|
|
||||||
|
* DeepStream 6.3 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=12.1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.2 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.8 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.1.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.7 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 5.1 on x86 platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.1 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
* DeepStream 6.0.1 / 6.0 / 5.1 on Jetson platform
|
||||||
|
|
||||||
|
```
|
||||||
|
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Edit the config_infer_primary_rtdetr file
|
||||||
|
|
||||||
|
Edit the `config_infer_primary_rtdetr.txt` file according to your model (example for RT-DETR-R50 with 80 classes)
|
||||||
|
|
||||||
|
```
|
||||||
|
[property]
|
||||||
|
...
|
||||||
|
onnx-file=rtdetr_r50vd_6x_coco.onnx
|
||||||
|
...
|
||||||
|
num-detected-classes=80
|
||||||
|
...
|
||||||
|
parse-bbox-func-name=NvDsInferParseYolo
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: The **RT-DETR** do not resize the input with padding. To get better accuracy, use
|
||||||
|
|
||||||
|
```
|
||||||
|
[property]
|
||||||
|
...
|
||||||
|
maintain-aspect-ratio=0
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Edit the deepstream_app_config file
|
||||||
|
|
||||||
|
```
|
||||||
|
...
|
||||||
|
[primary-gie]
|
||||||
|
...
|
||||||
|
config-file=config_infer_primary_rtdetr.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
##
|
||||||
|
|
||||||
|
### Testing the model
|
||||||
|
|
||||||
|
```
|
||||||
|
deepstream-app -c deepstream_app_config.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
**NOTE**: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
|
||||||
|
|
||||||
|
**NOTE**: For more information about custom models configuration (`batch-size`, `network-mode`, etc), please check the [`docs/customModels.md`](customModels.md) file.
|
||||||
@@ -1,4 +1,4 @@
|
|||||||
# RT-DETR usage
|
# RT-DETR PyTorch usage
|
||||||
|
|
||||||
**NOTE**: https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch version.
|
**NOTE**: https://github.com/lyuwenyu/RT-DETR/tree/main/rtdetr_pytorch version.
|
||||||
|
|
||||||
@@ -29,7 +29,7 @@ Copy the `export_rtdetr_pytorch.py` file from `DeepStream-Yolo/utils` directory
|
|||||||
|
|
||||||
#### 3. Download the model
|
#### 3. Download the model
|
||||||
|
|
||||||
Download the `pth` file from [RT-DETR](https://github.com/lyuwenyu/storage/releases) releases (example for RT-DETR-R50)
|
Download the `pth` file from [RT-DETR PyTorch](https://github.com/lyuwenyu/storage/releases/tag/v0.1) releases (example for RT-DETR-R50)
|
||||||
|
|
||||||
```
|
```
|
||||||
wget https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetr_r50vd_6x_coco_from_paddle.pth
|
wget https://github.com/lyuwenyu/storage/releases/download/v0.1/rtdetr_r50vd_6x_coco_from_paddle.pth
|
||||||
104
utils/export_rtdetr_paddle.py
Executable file
104
utils/export_rtdetr_paddle.py
Executable file
@@ -0,0 +1,104 @@
|
|||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
import onnx
|
||||||
|
import paddle
|
||||||
|
import paddle.nn as nn
|
||||||
|
import paddle.nn.functional as F
|
||||||
|
from ppdet.core.workspace import load_config, merge_config
|
||||||
|
from ppdet.utils.check import check_version, check_config
|
||||||
|
from ppdet.utils.cli import ArgsParser
|
||||||
|
from ppdet.engine import Trainer
|
||||||
|
|
||||||
|
|
||||||
|
class DeepStreamOutput(nn.Layer):
|
||||||
|
def __init__(self, img_size, use_focal_loss):
|
||||||
|
self.img_size = img_size
|
||||||
|
self.use_focal_loss = use_focal_loss
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
boxes = x['bbox']
|
||||||
|
out_shape = paddle.to_tensor([[*self.img_size]]).flip(1).tile([1, 2]).unsqueeze(1)
|
||||||
|
boxes *= out_shape
|
||||||
|
bbox_num = F.sigmoid(x['bbox_num']) if self.use_focal_loss else F.softmax(x['bbox_num'])[:, :, :-1]
|
||||||
|
scores = paddle.max(bbox_num, 2, keepdim=True)
|
||||||
|
classes = paddle.cast(paddle.argmax(bbox_num, 2, keepdim=True), dtype='float32')
|
||||||
|
return boxes, scores, classes
|
||||||
|
|
||||||
|
|
||||||
|
def suppress_warnings():
|
||||||
|
warnings.filterwarnings('ignore')
|
||||||
|
|
||||||
|
|
||||||
|
def rtdetr_paddle_export(FLAGS):
|
||||||
|
cfg = load_config(FLAGS.config)
|
||||||
|
FLAGS.opt['weights'] = FLAGS.weights
|
||||||
|
FLAGS.opt['exclude_nms'] = True
|
||||||
|
FLAGS.opt['exclude_post_process'] = True
|
||||||
|
merge_config(FLAGS.opt)
|
||||||
|
merge_config(FLAGS.opt)
|
||||||
|
check_config(cfg)
|
||||||
|
check_version()
|
||||||
|
trainer = Trainer(cfg, mode='test')
|
||||||
|
trainer.load_weights(cfg.weights)
|
||||||
|
trainer.model.eval()
|
||||||
|
if not os.path.exists('.tmp'):
|
||||||
|
os.makedirs('.tmp')
|
||||||
|
static_model, _ = trainer._get_infer_cfg_and_input_spec('.tmp')
|
||||||
|
os.system('rm -r .tmp')
|
||||||
|
return trainer.cfg, static_model
|
||||||
|
|
||||||
|
|
||||||
|
def main(FLAGS):
|
||||||
|
suppress_warnings()
|
||||||
|
|
||||||
|
print('\nStarting: %s' % FLAGS.weights)
|
||||||
|
|
||||||
|
print('\nOpening RT-DETR Paddle model\n')
|
||||||
|
|
||||||
|
paddle.set_device('cpu')
|
||||||
|
cfg, model = rtdetr_paddle_export(FLAGS)
|
||||||
|
|
||||||
|
img_size = [cfg.eval_size[1], cfg.eval_size[0]]
|
||||||
|
|
||||||
|
model = nn.Sequential(model, DeepStreamOutput(img_size, cfg.use_focal_loss))
|
||||||
|
|
||||||
|
onnx_input_im = {}
|
||||||
|
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32', name='image')
|
||||||
|
onnx_output_file = cfg.filename + '.onnx'
|
||||||
|
|
||||||
|
print('\nExporting the model to ONNX\n')
|
||||||
|
paddle.onnx.export(model, cfg.filename, input_spec=[onnx_input_im], opset_version=FLAGS.opset)
|
||||||
|
|
||||||
|
if FLAGS.simplify:
|
||||||
|
print('\nSimplifying the ONNX model')
|
||||||
|
import onnxsim
|
||||||
|
model_onnx = onnx.load(onnx_output_file)
|
||||||
|
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||||
|
onnx.save(model_onnx, onnx_output_file)
|
||||||
|
|
||||||
|
print('\nDone: %s\n' % onnx_output_file)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = ArgsParser()
|
||||||
|
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pdparams) file path (required)')
|
||||||
|
parser.add_argument('--slim_config', default=None, type=str, help='Slim configuration file of slim method')
|
||||||
|
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
|
||||||
|
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||||
|
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||||
|
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||||
|
args = parser.parse_args()
|
||||||
|
if not os.path.isfile(args.weights):
|
||||||
|
raise SystemExit('\nInvalid weights file')
|
||||||
|
if args.dynamic and args.batch > 1:
|
||||||
|
raise SystemExit('\nCannot set dynamic batch-size and static batch-size at same time')
|
||||||
|
elif args.dynamic:
|
||||||
|
args.batch = None
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
FLAGS = parse_args()
|
||||||
|
sys.exit(main(FLAGS))
|
||||||
Reference in New Issue
Block a user