Move YOLO Decoder from CPU to GPU

This commit is contained in:
Marcos Luciano
2022-02-17 15:21:35 -03:00
parent a82f1b8662
commit 91d15dda56
10 changed files with 339 additions and 279 deletions

View File

@@ -23,7 +23,8 @@ NVIDIA DeepStream SDK 6.0 configuration for YOLO models
* Support for reorg, implicit and channel layers (YOLOR)
* YOLOv5 6.0 native support
* YOLOR native support
* **Models benchmarks**
* Models benchmarks
* **GPU YOLO Decoder (moved from CPU to GPU to get better performance)**
##
@@ -43,6 +44,8 @@ NVIDIA DeepStream SDK 6.0 configuration for YOLO models
### Requirements
#### x86 platform
* [Ubuntu 18.04](https://releases.ubuntu.com/18.04.6/)
* [CUDA 11.4.3](https://developer.nvidia.com/cuda-toolkit)
* [TensorRT 8.0 GA (8.0.1)](https://developer.nvidia.com/tensorrt)
@@ -51,10 +54,22 @@ NVIDIA DeepStream SDK 6.0 configuration for YOLO models
* [NVIDIA DeepStream SDK 6.0](https://developer.nvidia.com/deepstream-sdk)
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
**For YOLOv5 and YOLOR**:
#### Jetson platform
* [JetPack 4.6](https://developer.nvidia.com/embedded/jetpack)
* [NVIDIA DeepStream SDK 6.0](https://developer.nvidia.com/deepstream-sdk)
* [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo)
### For YOLOv5 and YOLOR
#### x86 platform
* [PyTorch >= 1.7.0](https://pytorch.org/get-started/locally/)
#### Jetson platform
* [PyTorch >= 1.7.0](https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-10-now-available/72048)
##
### Tested models