Move YOLO Decoder from CPU to GPU

This commit is contained in:
Marcos Luciano
2022-02-17 15:21:35 -03:00
parent a82f1b8662
commit 91d15dda56
10 changed files with 339 additions and 279 deletions

View File

@@ -29,10 +29,10 @@
#include <iostream>
#include <memory>
int kMODEL_TYPE;
int kNUM_BBOXES;
int kNUM_CLASSES;
float kBETA_NMS;
std::vector<float> kANCHORS;
std::vector<std::vector<int>> kMASK;
namespace {
template <typename T>
@@ -50,25 +50,28 @@ namespace {
}
}
cudaError_t cudaYoloLayer (
cudaError_t cudaYoloLayer_r (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float modelScale);
cudaError_t cudaYoloLayer_v2 (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream);
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float scaleXY,
const void* anchors, const void* mask);
cudaError_t cudaYoloLayer_nc (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float modelScale);
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float scaleXY,
const void* anchors, const void* mask);
cudaError_t cudaYoloLayer_r (
cudaError_t cudaYoloLayer (
const void* input, void* output, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float modelScale);
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const float scaleXY,
const void* anchors, const void* mask);
cudaError_t cudaYoloLayer_v2 (
const void* input, void* output, void* softmax, const uint& batchSize,
const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream, const void* anchors);
YoloLayer::YoloLayer (const void* data, size_t length)
{
@@ -79,10 +82,11 @@ YoloLayer::YoloLayer (const void* data, size_t length)
read(d, m_GridSizeY);
read(d, m_OutputSize);
read(d, m_type);
read(d, m_new_coords);
read(d, m_scale_x_y);
read(d, m_beta_nms);
read(d, m_Type);
read(d, m_NewCoords);
read(d, m_ScaleXY);
read(d, m_BetaNMS);
uint anchorsSize;
read(d, anchorsSize);
for (uint i = 0; i < anchorsSize; i++) {
@@ -90,35 +94,43 @@ YoloLayer::YoloLayer (const void* data, size_t length)
read(d, result);
m_Anchors.push_back(result);
}
uint maskSize;
read(d, maskSize);
for (uint i = 0; i < maskSize; i++) {
uint nMask;
read(d, nMask);
std::vector<int> pMask;
for (uint f = 0; f < nMask; f++) {
int result;
read(d, result);
pMask.push_back(result);
}
m_Mask.push_back(pMask);
int result;
read(d, result);
m_Mask.push_back(result);
}
kMODEL_TYPE = m_Type;
kNUM_BBOXES = m_NumBoxes;
kNUM_CLASSES = m_NumClasses;
kBETA_NMS = m_beta_nms;
kANCHORS = m_Anchors;
kMASK = m_Mask;
kBETA_NMS = m_BetaNMS;
if (m_Anchors.size() > 0) {
float* m_anchors = m_Anchors.data();
CHECK(cudaMallocHost(&mAnchors, m_Anchors.size() * sizeof(float)));
CHECK(cudaMemcpy(mAnchors, m_anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
}
if (m_Mask.size() > 0) {
int* m_mask = m_Mask.data();
CHECK(cudaMallocHost(&mMask, m_Mask.size() * sizeof(int)));
CHECK(cudaMemcpy(mMask, m_mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
}
};
YoloLayer::YoloLayer (
const uint& numBoxes, const uint& numClasses, const uint& gridSizeX, const uint& gridSizeY, const uint model_type, const uint new_coords, const float scale_x_y, const float beta_nms, const std::vector<float> anchors, std::vector<std::vector<int>> mask) :
const uint& numBoxes, const uint& numClasses, const uint& gridSizeX, const uint& gridSizeY, const uint modelType, const uint newCoords, const float scaleXY, const float betaNMS, const std::vector<float> anchors, std::vector<int> mask) :
m_NumBoxes(numBoxes),
m_NumClasses(numClasses),
m_GridSizeX(gridSizeX),
m_GridSizeY(gridSizeY),
m_type(model_type),
m_new_coords(new_coords),
m_scale_x_y(scale_x_y),
m_beta_nms(beta_nms),
m_Type(modelType),
m_NewCoords(newCoords),
m_ScaleXY(scaleXY),
m_BetaNMS(betaNMS),
m_Anchors(anchors),
m_Mask(mask)
{
@@ -127,8 +139,30 @@ YoloLayer::YoloLayer (
assert(m_GridSizeX > 0);
assert(m_GridSizeY > 0);
m_OutputSize = m_GridSizeX * m_GridSizeY * (m_NumBoxes * (4 + 1 + m_NumClasses));
if (m_Anchors.size() > 0) {
float* m_anchors = m_Anchors.data();
CHECK(cudaMallocHost(&mAnchors, m_Anchors.size() * sizeof(float)));
CHECK(cudaMemcpy(mAnchors, m_anchors, m_Anchors.size() * sizeof(float), cudaMemcpyHostToDevice));
}
if (m_Mask.size() > 0) {
int* m_mask = m_Mask.data();
CHECK(cudaMallocHost(&mMask, m_Mask.size() * sizeof(int)));
CHECK(cudaMemcpy(mMask, m_mask, m_Mask.size() * sizeof(int), cudaMemcpyHostToDevice));
}
};
YoloLayer::~YoloLayer()
{
if (m_Anchors.size() > 0) {
CHECK(cudaFreeHost(mAnchors));
}
if (m_Mask.size() > 0) {
CHECK(cudaFreeHost(mMask));
}
}
nvinfer1::Dims
YoloLayer::getOutputDimensions(
int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
@@ -159,27 +193,33 @@ int YoloLayer::enqueue(
int batchSize, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
if (m_type == 2) { // YOLOR incorrect param
if (m_Type == 2) { // YOLOR incorrect param: scale_x_y = 2.0
CHECK(cudaYoloLayer_r(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_scale_x_y));
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, 2.0, mAnchors, mMask));
}
else if (m_type == 1) {
if (m_new_coords) {
else if (m_Type == 1) {
if (m_NewCoords) {
CHECK(cudaYoloLayer_nc(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_scale_x_y));
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_ScaleXY, mAnchors, mMask));
}
else {
CHECK(cudaYoloLayer(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_scale_x_y));
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, m_ScaleXY, mAnchors, mMask));
}
}
else {
void* softmax;
cudaMallocHost(&softmax, sizeof(outputs[0]));
cudaMemcpy(softmax, outputs[0], sizeof(outputs[0]), cudaMemcpyHostToDevice);
CHECK(cudaYoloLayer_v2(
inputs[0], outputs[0], batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream));
inputs[0], outputs[0], softmax, batchSize, m_GridSizeX, m_GridSizeY, m_NumClasses, m_NumBoxes,
m_OutputSize, stream, mAnchors));
CHECK(cudaFreeHost(softmax));
}
return 0;
}
@@ -193,13 +233,10 @@ size_t YoloLayer::getSerializationSize() const noexcept
int maskSum = 1;
for (uint i = 0; i < m_Mask.size(); i++) {
maskSum += 1;
for (uint f = 0; f < m_Mask[i].size(); f++) {
maskSum += 1;
}
}
return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSizeX) + sizeof(m_GridSizeY) + sizeof(m_OutputSize) + sizeof(m_type)
+ sizeof(m_new_coords) + sizeof(m_scale_x_y) + sizeof(m_beta_nms) + anchorsSum * sizeof(float) + maskSum * sizeof(int);
return sizeof(m_NumBoxes) + sizeof(m_NumClasses) + sizeof(m_GridSizeX) + sizeof(m_GridSizeY) + sizeof(m_OutputSize) + sizeof(m_Type)
+ sizeof(m_NewCoords) + sizeof(m_ScaleXY) + sizeof(m_BetaNMS) + anchorsSum * sizeof(float) + maskSum * sizeof(int);
}
void YoloLayer::serialize(void* buffer) const noexcept
@@ -211,33 +248,32 @@ void YoloLayer::serialize(void* buffer) const noexcept
write(d, m_GridSizeY);
write(d, m_OutputSize);
write(d, m_type);
write(d, m_new_coords);
write(d, m_scale_x_y);
write(d, m_beta_nms);
write(d, m_Type);
write(d, m_NewCoords);
write(d, m_ScaleXY);
write(d, m_BetaNMS);
uint anchorsSize = m_Anchors.size();
write(d, anchorsSize);
for (uint i = 0; i < anchorsSize; i++) {
write(d, m_Anchors[i]);
}
uint maskSize = m_Mask.size();
write(d, maskSize);
for (uint i = 0; i < maskSize; i++) {
uint pMaskSize = m_Mask[i].size();
write(d, pMaskSize);
for (uint f = 0; f < pMaskSize; f++) {
write(d, m_Mask[i][f]);
}
write(d, m_Mask[i]);
}
kMODEL_TYPE = m_Type;
kNUM_BBOXES = m_NumBoxes;
kNUM_CLASSES = m_NumClasses;
kBETA_NMS = m_beta_nms;
kANCHORS = m_Anchors;
kMASK = m_Mask;
kBETA_NMS = m_BetaNMS;
}
nvinfer1::IPluginV2* YoloLayer::clone() const noexcept
{
return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSizeX, m_GridSizeY, m_type, m_new_coords, m_scale_x_y, m_beta_nms, m_Anchors, m_Mask);
return new YoloLayer (m_NumBoxes, m_NumClasses, m_GridSizeX, m_GridSizeY, m_Type, m_NewCoords, m_ScaleXY, m_BetaNMS, m_Anchors, m_Mask);
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);