Move YOLO Decoder from CPU to GPU
This commit is contained in:
@@ -11,8 +11,28 @@
|
||||
|
||||
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
|
||||
|
||||
__global__ void gpuRegionLayer(const float* input, float* output, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses,
|
||||
const uint numBBoxes)
|
||||
__device__ void softmaxGPU(const float* input, const int bbindex, const int numGridCells,
|
||||
uint z_id, const uint numOutputClasses, float temp, float* output)
|
||||
{
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = -INFINITY;
|
||||
for (i = 0; i < numOutputClasses; ++i) {
|
||||
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
||||
largest = (val>largest) ? val : largest;
|
||||
}
|
||||
for (i = 0; i < numOutputClasses; ++i) {
|
||||
float e = __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
|
||||
sum += e;
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
|
||||
}
|
||||
for (i = 0; i < numOutputClasses; ++i) {
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gpuRegionLayer(const float* input, float* output, float* softmax, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses,
|
||||
const uint numBBoxes, const float* anchors)
|
||||
{
|
||||
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
@@ -27,43 +47,51 @@ __global__ void gpuRegionLayer(const float* input, float* output, const uint gri
|
||||
const int bbindex = y_id * gridSizeX + x_id;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
|
||||
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]);
|
||||
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]) + x_id;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
|
||||
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]);
|
||||
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]) + y_id;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
|
||||
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]);
|
||||
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]) * anchors[z_id * 2];
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
|
||||
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]);
|
||||
= __expf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]) * anchors[z_id * 2 + 1];
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
|
||||
softmaxGPU(input, bbindex, numGridCells, z_id, numOutputClasses, 1.0, softmax);
|
||||
|
||||
const float objectness
|
||||
= sigmoidGPU(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]);
|
||||
|
||||
float temp = 1.0;
|
||||
int i;
|
||||
float sum = 0;
|
||||
float largest = -INFINITY;
|
||||
for(i = 0; i < numOutputClasses; ++i){
|
||||
int val = input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
||||
largest = (val>largest) ? val : largest;
|
||||
}
|
||||
for(i = 0; i < numOutputClasses; ++i){
|
||||
float e = exp(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] / temp - largest / temp);
|
||||
sum += e;
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] = e;
|
||||
}
|
||||
for(i = 0; i < numOutputClasses; ++i){
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))] /= sum;
|
||||
float maxProb = 0.0f;
|
||||
int maxIndex = -1;
|
||||
|
||||
for (uint i = 0; i < numOutputClasses; ++i)
|
||||
{
|
||||
float prob
|
||||
= softmax[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
||||
|
||||
if (prob > maxProb)
|
||||
{
|
||||
maxProb = prob;
|
||||
maxIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
|
||||
= objectness * maxProb;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 5)]
|
||||
= maxIndex;
|
||||
}
|
||||
|
||||
cudaError_t cudaYoloLayer_v2(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream);
|
||||
cudaError_t cudaYoloLayer_v2(const void* input, void* output, void* softmax, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream,
|
||||
const void* anchors);
|
||||
|
||||
cudaError_t cudaYoloLayer_v2(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream)
|
||||
cudaError_t cudaYoloLayer_v2(const void* input, void* output, void* softmax, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream,
|
||||
const void* anchors)
|
||||
{
|
||||
dim3 threads_per_block(16, 16, 4);
|
||||
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
|
||||
@@ -73,8 +101,9 @@ cudaError_t cudaYoloLayer_v2(const void* input, void* output, const uint& batchS
|
||||
{
|
||||
gpuRegionLayer<<<number_of_blocks, threads_per_block, 0, stream>>>(
|
||||
reinterpret_cast<const float*>(input) + (batch * outputSize),
|
||||
reinterpret_cast<float*>(output) + (batch * outputSize), gridSizeX, gridSizeY, numOutputClasses,
|
||||
numBBoxes);
|
||||
reinterpret_cast<float*>(output) + (batch * outputSize),
|
||||
reinterpret_cast<float*>(softmax) + (batch * outputSize), gridSizeX, gridSizeY, numOutputClasses,
|
||||
numBBoxes, reinterpret_cast<const float*>(anchors));
|
||||
}
|
||||
return cudaGetLastError();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user