Move YOLO Decoder from CPU to GPU
This commit is contained in:
@@ -9,10 +9,8 @@
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
inline __device__ float sigmoidGPU(const float& x) { return 1.0f / (1.0f + __expf(-x)); }
|
||||
|
||||
__global__ void gpuYoloLayer_nc(const float* input, float* output, const uint gridSizeX, const uint gridSizeY, const uint numOutputClasses,
|
||||
const uint numBBoxes, const float scale_x_y)
|
||||
const uint numBBoxes, const float scaleXY, const float* anchors, const int* mask)
|
||||
{
|
||||
uint x_id = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
uint y_id = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
@@ -26,38 +24,53 @@ __global__ void gpuYoloLayer_nc(const float* input, float* output, const uint gr
|
||||
const int numGridCells = gridSizeX * gridSizeY;
|
||||
const int bbindex = y_id * gridSizeX + x_id;
|
||||
|
||||
const float alpha = scale_x_y;
|
||||
const float beta = -0.5 * (scale_x_y - 1);
|
||||
const float alpha = scaleXY;
|
||||
const float beta = -0.5 * (scaleXY - 1);
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)]
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta;
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 0)] * alpha + beta + x_id;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)]
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta;
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 1)] * alpha + beta + y_id;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)]
|
||||
= pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2);
|
||||
= __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 2)] * 2, 2) * anchors[mask[z_id] * 2];
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)]
|
||||
= pow(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2);
|
||||
= __powf(input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 3)] * 2, 2) * anchors[mask[z_id] * 2 + 1];
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
|
||||
const float objectness
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)];
|
||||
|
||||
float maxProb = 0.0f;
|
||||
int maxIndex = -1;
|
||||
|
||||
for (uint i = 0; i < numOutputClasses; ++i)
|
||||
{
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))]
|
||||
float prob
|
||||
= input[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + (5 + i))];
|
||||
|
||||
if (prob > maxProb)
|
||||
{
|
||||
maxProb = prob;
|
||||
maxIndex = i;
|
||||
}
|
||||
}
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 4)]
|
||||
= objectness * maxProb;
|
||||
|
||||
output[bbindex + numGridCells * (z_id * (5 + numOutputClasses) + 5)]
|
||||
= maxIndex;
|
||||
}
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream,
|
||||
const float modelScale);
|
||||
const float scaleXY, const void* anchors, const void* mask);
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(const void* input, void* output, const uint& batchSize, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, uint64_t outputSize, cudaStream_t stream,
|
||||
const float modelScale)
|
||||
const float scaleXY, const void* anchors, const void* mask)
|
||||
{
|
||||
dim3 threads_per_block(16, 16, 4);
|
||||
dim3 number_of_blocks((gridSizeX / threads_per_block.x) + 1,
|
||||
@@ -68,7 +81,7 @@ cudaError_t cudaYoloLayer_nc(const void* input, void* output, const uint& batchS
|
||||
gpuYoloLayer_nc<<<number_of_blocks, threads_per_block, 0, stream>>>(
|
||||
reinterpret_cast<const float*>(input) + (batch * outputSize),
|
||||
reinterpret_cast<float*>(output) + (batch * outputSize), gridSizeX, gridSizeY, numOutputClasses,
|
||||
numBBoxes, modelScale);
|
||||
numBBoxes, scaleXY, reinterpret_cast<const float*>(anchors), reinterpret_cast<const int*>(mask));
|
||||
}
|
||||
return cudaGetLastError();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user