Add YOLOX support

This commit is contained in:
Marcos Luciano
2023-01-30 23:59:51 -03:00
parent f9c7a4dfca
commit 825d6bfda8
11 changed files with 746 additions and 24 deletions

View File

@@ -136,7 +136,7 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
float eps = 1.0e-5;
if (m_NetworkType.find("yolov5") != std::string::npos || m_NetworkType.find("yolov7") != std::string::npos ||
m_NetworkType.find("yolov8") != std::string::npos)
m_NetworkType.find("yolov8") != std::string::npos || m_NetworkType.find("yolox") != std::string::npos)
eps = 1.0e-3;
else if (m_NetworkType.find("yolor") != std::string::npos)
eps = 1.0e-4;
@@ -398,6 +398,23 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
std::string layerName = "detect_v8";
printLayerInfo(layerIndex, layerName, inputVol, outputVol, std::to_string(weightPtr));
}
else if (m_ConfigBlocks.at(i).at("type") == "detect_x") {
modelType = 5;
std::string blobName = "detect_x_" + std::to_string(i);
nvinfer1::Dims prevTensorDims = previous->getDimensions();
TensorInfo& curYoloTensor = m_YoloTensors.at(yoloCountInputs);
curYoloTensor.blobName = blobName;
curYoloTensor.numBBoxes = prevTensorDims.d[0];
m_NumClasses = prevTensorDims.d[1] - 5;
std::string outputVol = dimsToString(previous->getDimensions());
tensorOutputs.push_back(previous);
yoloTensorInputs[yoloCountInputs] = previous;
++yoloCountInputs;
std::string layerName = "detect_x";
printLayerInfo(layerIndex, layerName, "-", outputVol, std::to_string(weightPtr));
}
else {
std::cerr << "\nUnsupported layer type --> \"" << m_ConfigBlocks.at(i).at("type") << "\"" << std::endl;
assert(0);
@@ -415,7 +432,7 @@ Yolo::buildYoloNetwork(std::vector<float>& weights, nvinfer1::INetworkDefinition
uint64_t outputSize = 0;
for (uint j = 0; j < yoloCountInputs; ++j) {
TensorInfo& curYoloTensor = m_YoloTensors.at(j);
if (modelType == 3 || modelType == 4)
if (modelType == 3 || modelType == 4 || modelType == 5)
outputSize = curYoloTensor.numBBoxes;
else
outputSize += curYoloTensor.gridSizeX * curYoloTensor.gridSizeY * curYoloTensor.numBBoxes;
@@ -587,6 +604,41 @@ Yolo::parseConfigBlocks()
TensorInfo outputTensor;
m_YoloTensors.push_back(outputTensor);
}
else if (block.at("type") == "detect_x") {
++m_YoloCount;
TensorInfo outputTensor;
std::vector<int> strides;
std::string stridesString = block.at("strides");
while (!stridesString.empty()) {
int npos = stridesString.find_first_of(',');
if (npos != -1) {
int stride = std::stof(trim(stridesString.substr(0, npos)));
strides.push_back(stride);
stridesString.erase(0, npos + 1);
}
else {
int stride = std::stof(trim(stridesString));
strides.push_back(stride);
break;
}
}
for (uint i = 0; i < strides.size(); ++i) {
int num_grid_y = m_InputH / strides[i];
int num_grid_x = m_InputW / strides[i];
for (int g1 = 0; g1 < num_grid_y; ++g1) {
for (int g0 = 0; g0 < num_grid_x; ++g0) {
outputTensor.anchors.push_back((float) g0);
outputTensor.anchors.push_back((float) g1);
outputTensor.mask.push_back(strides[i]);
}
}
}
m_YoloTensors.push_back(outputTensor);
}
}
}