Add RT-DETR Ultralytics
This commit is contained in:
124
utils/export_rtdetr_ultralytics.py
Executable file
124
utils/export_rtdetr_ultralytics.py
Executable file
@@ -0,0 +1,124 @@
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import warnings
|
||||
import onnx
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ultralytics import RTDETR
|
||||
from ultralytics.utils.torch_utils import select_device
|
||||
from ultralytics.nn.modules import C2f, Detect, RTDETRDecoder
|
||||
|
||||
|
||||
class DeepStreamOutput(nn.Module):
|
||||
def __init__(self, img_size):
|
||||
self.img_size = img_size
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
boxes = x[:, :, :4]
|
||||
boxes[:, :, [0, 2]] *= self.img_size[1]
|
||||
boxes[:, :, [1, 3]] *= self.img_size[0]
|
||||
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
|
||||
classes = classes.float()
|
||||
return boxes, scores, classes
|
||||
|
||||
|
||||
def suppress_warnings():
|
||||
warnings.filterwarnings('ignore', category=torch.jit.TracerWarning)
|
||||
warnings.filterwarnings('ignore', category=UserWarning)
|
||||
warnings.filterwarnings('ignore', category=DeprecationWarning)
|
||||
|
||||
|
||||
def rtdetr_ultralytics_export(weights, device):
|
||||
model = RTDETR(weights)
|
||||
model = deepcopy(model.model).to(device)
|
||||
for p in model.parameters():
|
||||
p.requires_grad = False
|
||||
model.eval()
|
||||
model.float()
|
||||
model = model.fuse()
|
||||
for k, m in model.named_modules():
|
||||
if isinstance(m, (Detect, RTDETRDecoder)):
|
||||
m.dynamic = False
|
||||
m.export = True
|
||||
m.format = 'onnx'
|
||||
elif isinstance(m, C2f):
|
||||
m.forward = m.forward_split
|
||||
return model
|
||||
|
||||
|
||||
def main(args):
|
||||
suppress_warnings()
|
||||
|
||||
print('\nStarting: %s' % args.weights)
|
||||
|
||||
print('Opening RT-DETR Ultralytics model\n')
|
||||
|
||||
device = select_device('cpu')
|
||||
model = rtdetr_ultralytics_export(args.weights, device)
|
||||
|
||||
if len(model.names.keys()) > 0:
|
||||
print('\nCreating labels.txt file')
|
||||
f = open('labels.txt', 'w')
|
||||
for name in model.names.values():
|
||||
f.write(name + '\n')
|
||||
f.close()
|
||||
|
||||
img_size = args.size * 2 if len(args.size) == 1 else args.size
|
||||
|
||||
model = nn.Sequential(model, DeepStreamOutput(img_size))
|
||||
|
||||
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
|
||||
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
|
||||
|
||||
dynamic_axes = {
|
||||
'input': {
|
||||
0: 'batch'
|
||||
},
|
||||
'boxes': {
|
||||
0: 'batch'
|
||||
},
|
||||
'scores': {
|
||||
0: 'batch'
|
||||
},
|
||||
'classes': {
|
||||
0: 'batch'
|
||||
}
|
||||
}
|
||||
|
||||
print('\nExporting the model to ONNX')
|
||||
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
|
||||
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
|
||||
dynamic_axes=dynamic_axes if args.dynamic else None)
|
||||
|
||||
if args.simplify:
|
||||
print('Simplifying the ONNX model')
|
||||
import onnxsim
|
||||
model_onnx = onnx.load(onnx_output_file)
|
||||
model_onnx, _ = onnxsim.simplify(model_onnx)
|
||||
onnx.save(model_onnx, onnx_output_file)
|
||||
|
||||
print('Done: %s\n' % onnx_output_file)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='DeepStream RT-DETR Ultralytics conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
|
||||
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
|
||||
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
|
||||
parser.add_argument('--batch', type=int, default=1, help='Static batch-size')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit('Invalid weights file')
|
||||
if args.dynamic and args.batch > 1:
|
||||
raise SystemExit('Cannot set dynamic batch-size and static batch-size at same time')
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
sys.exit(main(args))
|
||||
Reference in New Issue
Block a user