New features and fixes

This commit is contained in:
Marcos Luciano
2023-06-05 14:48:23 -03:00
parent 3f14b0d95d
commit 66a6754b77
57 changed files with 2137 additions and 1534 deletions

View File

@@ -18,7 +18,7 @@ class DeepStreamOutput(nn.Module):
def forward(self, x):
boxes = x[1]
scores, classes = torch.max(x[0], 2, keepdim=True)
return torch.cat((boxes, scores, classes.float()), dim=2)
return boxes, scores, classes
def suppress_warnings():
@@ -65,21 +65,27 @@ def main(args):
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = cfg.miscs['exp_name'] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -100,11 +106,14 @@ def parse_args():
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.config):
raise SystemExit('Invalid config file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -19,8 +19,8 @@ class DeepStreamOutput(nn.Layer):
boxes = x['bbox']
x['bbox_num'] = x['bbox_num'].transpose([0, 2, 1])
scores = paddle.max(x['bbox_num'], 2, keepdim=True)
classes = paddle.cast(paddle.argmax(x['bbox_num'], 2, keepdim=True), dtype='float32')
return paddle.concat((boxes, scores, classes), axis=2)
classes = paddle.argmax(x['bbox_num'], 2, keepdim=True)
return boxes, scores, classes
def ppyoloe_export(FLAGS):
@@ -65,8 +65,8 @@ def main(FLAGS):
img_size = [cfg.eval_height, cfg.eval_width]
onnx_input_im = {}
onnx_input_im['image'] = paddle.static.InputSpec(shape=[None, 3, *img_size], dtype='float32', name='image')
onnx_input_im['scale_factor'] = paddle.static.InputSpec(shape=[None, 2], dtype='float32', name='scale_factor')
onnx_input_im['image'] = paddle.static.InputSpec(shape=[FLAGS.batch, 3, *img_size], dtype='float32', name='image')
onnx_input_im['scale_factor'] = paddle.static.InputSpec(shape=[FLAGS.batch, 2], dtype='float32', name='scale_factor')
onnx_output_file = cfg.filename + '.onnx'
print('\nExporting the model to ONNX\n')
@@ -88,7 +88,15 @@ def parse_args():
parser.add_argument('--slim_config', default=None, type=str, help='Slim configuration file of slim method')
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('\nInvalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('\nCannot set dynamic batch-size and implicit batch-size at same time')
elif args.dynamic:
args.batch = None
return args

View File

@@ -19,7 +19,8 @@ class DeepStreamOutput(nn.Module):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores * objectness, classes.float()), dim=2)
scores *= objectness
return boxes, scores, classes
def suppress_warnings():
@@ -63,21 +64,27 @@ def main(args):
if img_size == [640, 640] and args.p6:
img_size = [1280] * 2
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -98,9 +105,12 @@ def parse_args():
parser.add_argument('--opset', type=int, default=17, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -23,7 +23,8 @@ class DeepStreamOutput(nn.Module):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores * objectness, classes.float()), dim=2)
scores *= objectness
return boxes, scores, classes
def suppress_warnings():
@@ -66,21 +67,27 @@ def main(args):
if img_size == [640, 640] and args.p6:
img_size = [1280] * 2
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -101,9 +108,12 @@ def parse_args():
parser.add_argument('--opset', type=int, default=13, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -19,7 +19,8 @@ class DeepStreamOutput(nn.Module):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores * objectness, classes.float()), dim=2)
scores *= objectness
return boxes, scores, classes
def suppress_warnings():
@@ -67,21 +68,27 @@ def main(args):
if img_size == [640, 640] and args.p6:
img_size = [1280] * 2
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -102,9 +109,12 @@ def parse_args():
parser.add_argument('--opset', type=int, default=12, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -18,7 +18,7 @@ class DeepStreamOutput(nn.Module):
x = x.transpose(1, 2)
boxes = x[:, :, :4]
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
return torch.cat((boxes, scores, classes.float()), dim=2)
return boxes, scores, classes
def suppress_warnings():
@@ -59,21 +59,27 @@ def main(args):
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -93,9 +99,12 @@ def parse_args():
parser.add_argument('--opset', type=int, default=12, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -19,7 +19,7 @@ class DeepStreamOutput(nn.Module):
x = x.transpose(1, 2)
boxes = x[:, :, :4]
scores, classes = torch.max(x[:, :, 4:], 2, keepdim=True)
return torch.cat((boxes, scores, classes.float()), dim=2)
return boxes, scores, classes
def suppress_warnings():
@@ -67,21 +67,27 @@ def main(args):
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -101,9 +107,12 @@ def parse_args():
parser.add_argument('--opset', type=int, default=16, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -15,7 +15,7 @@ class DeepStreamOutput(nn.Module):
def forward(self, x):
boxes = x[0]
scores, classes = torch.max(x[1], 2, keepdim=True)
return torch.cat((boxes, scores, classes.float()), dim=2)
return boxes, scores, classes
def suppress_warnings():
@@ -46,21 +46,27 @@ def main(args):
img_size = args.size * 2 if len(args.size) == 1 else args.size
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -82,11 +88,14 @@ def parse_args():
parser.add_argument('--opset', type=int, default=14, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if args.model == '':
raise SystemExit('Invalid model name')
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -16,7 +16,8 @@ class DeepStreamOutput(nn.Module):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores * objectness, classes.float()), dim=2)
scores *= objectness
return boxes, scores, classes
def suppress_warnings():
@@ -79,21 +80,27 @@ def main(args):
if img_size == [640, 640] and args.p6:
img_size = [1280] * 2
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('\nExporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -115,9 +122,12 @@ def parse_args():
parser.add_argument('--opset', type=int, default=12, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args

View File

@@ -18,7 +18,8 @@ class DeepStreamOutput(nn.Module):
boxes = x[:, :, :4]
objectness = x[:, :, 4:5]
scores, classes = torch.max(x[:, :, 5:], 2, keepdim=True)
return torch.cat((boxes, scores * objectness, classes.float()), dim=2)
scores *= objectness
return boxes, scores, classes
def suppress_warnings():
@@ -54,21 +55,27 @@ def main(args):
img_size = [exp.input_size[1], exp.input_size[0]]
onnx_input_im = torch.zeros(1, 3, *img_size).to(device)
onnx_input_im = torch.zeros(args.batch, 3, *img_size).to(device)
onnx_output_file = os.path.basename(args.weights).split('.pt')[0] + '.onnx'
dynamic_axes = {
'input': {
0: 'batch'
},
'output': {
'boxes': {
0: 'batch'
},
'scores': {
0: 'batch'
},
'classes': {
0: 'batch'
}
}
print('Exporting the model to ONNX')
torch.onnx.export(model, onnx_input_im, onnx_output_file, verbose=False, opset_version=args.opset,
do_constant_folding=True, input_names=['input'], output_names=['output'],
do_constant_folding=True, input_names=['input'], output_names=['boxes', 'scores', 'classes'],
dynamic_axes=dynamic_axes if args.dynamic else None)
if args.simplify:
@@ -88,11 +95,14 @@ def parse_args():
parser.add_argument('--opset', type=int, default=11, help='ONNX opset version')
parser.add_argument('--simplify', action='store_true', help='ONNX simplify model')
parser.add_argument('--dynamic', action='store_true', help='Dynamic batch-size')
parser.add_argument('--batch', type=int, default=1, help='Implicit batch-size')
args = parser.parse_args()
if not os.path.isfile(args.weights):
raise SystemExit('Invalid weights file')
if not os.path.isfile(args.exp):
raise SystemExit('Invalid exp file')
if args.dynamic and args.batch > 1:
raise SystemExit('Cannot set dynamic batch-size and implicit batch-size at same time')
return args