New features and fixes

This commit is contained in:
Marcos Luciano
2023-06-05 14:48:23 -03:00
parent 3f14b0d95d
commit 66a6754b77
57 changed files with 2137 additions and 1534 deletions

View File

@@ -38,19 +38,20 @@ namespace {
}
}
cudaError_t cudaYoloLayer_nc(const void* input, void* output, void* count, const uint& batchSize, uint64_t& inputSize,
uint64_t& outputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask,
cudaStream_t stream);
cudaError_t cudaYoloLayer_nc(const void* input, void* boxes, void* scores, void* classes, const uint& batchSize,
const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaYoloLayer(const void* input, void* output, void* count, const uint& batchSize, uint64_t& inputSize,
uint64_t& outputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask,
cudaStream_t stream);
cudaError_t cudaYoloLayer(const void* input, void* boxes, void* scores, void* classes, const uint& batchSize,
const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth,
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* output, void* count, const uint& batchSize,
uint64_t& inputSize, uint64_t& outputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX,
const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream);
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* boxes, void* scores, void* classes,
const uint& batchSize, const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize,
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
const uint& numBBoxes, const void* anchors, cudaStream_t stream);
YoloLayer::YoloLayer(const void* data, size_t length) {
const char* d = static_cast<const char*>(data);
@@ -99,96 +100,10 @@ YoloLayer::YoloLayer(const uint& netWidth, const uint& netHeight, const uint& nu
assert(m_NetHeight > 0);
};
nvinfer1::Dims
YoloLayer::getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
nvinfer1::IPluginV2DynamicExt*
YoloLayer::clone() const noexcept
{
assert(index == 0);
return nvinfer1::Dims{2, {static_cast<int>(m_OutputSize), 6}};
}
bool
YoloLayer::supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept {
return (type == nvinfer1::DataType::kFLOAT && format == nvinfer1::PluginFormat::kLINEAR);
}
void
YoloLayer::configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs, const nvinfer1::Dims* outputDims,
int nbOutputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
{
assert(nbInputs > 0);
assert(format == nvinfer1::PluginFormat::kLINEAR);
assert(inputDims != nullptr);
}
#ifdef LEGACY
int
YoloLayer::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream)
#else
int32_t
YoloLayer::enqueue(int batchSize, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
noexcept
#endif
{
void* output = outputs[0];
CUDA_CHECK(cudaMemsetAsync((float*) output, 0, sizeof(float) * m_OutputSize * 6 * batchSize, stream));
void* count = workspace;
CUDA_CHECK(cudaMemsetAsync((int*) count, 0, sizeof(int) * batchSize, stream));
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i) {
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
uint numBBoxes = curYoloTensor.numBBoxes;
float scaleXY = curYoloTensor.scaleXY;
uint gridSizeX = curYoloTensor.gridSizeX;
uint gridSizeY = curYoloTensor.gridSizeY;
std::vector<float> anchors = curYoloTensor.anchors;
std::vector<int> mask = curYoloTensor.mask;
void* v_anchors;
void* v_mask;
if (anchors.size() > 0) {
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpyAsync(v_anchors, anchors.data(), sizeof(float) * anchors.size(), cudaMemcpyHostToDevice, stream));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpyAsync(v_mask, mask.data(), sizeof(int) * mask.size(), cudaMemcpyHostToDevice, stream));
}
uint64_t inputSize = gridSizeX * gridSizeY * (numBBoxes * (4 + 1 + m_NumClasses));
if (mask.size() > 0) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(inputs[i], output, count, batchSize, inputSize, m_OutputSize, m_NetWidth, m_NetHeight,
gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
else {
CUDA_CHECK(cudaYoloLayer(inputs[i], output, count, batchSize, inputSize, m_OutputSize, m_NetWidth, m_NetHeight,
gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
}
else {
void* softmax;
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize, stream));
CUDA_CHECK(cudaRegionLayer(inputs[i], softmax, output, count, batchSize, inputSize, m_OutputSize, m_NetWidth,
m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors, stream));
CUDA_CHECK(cudaFree(softmax));
}
if (anchors.size() > 0) {
CUDA_CHECK(cudaFree(v_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFree(v_mask));
}
}
return 0;
return new YoloLayer(m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize);
}
size_t
@@ -250,10 +165,113 @@ YoloLayer::serialize(void* buffer) const noexcept
}
}
nvinfer1::IPluginV2*
YoloLayer::clone() const noexcept
nvinfer1::DimsExprs
YoloLayer::getOutputDimensions(INT index, const nvinfer1::DimsExprs* inputs, INT nbInputDims,
nvinfer1::IExprBuilder& exprBuilder)noexcept
{
return new YoloLayer(m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize);
assert(index < 3);
if (index == 0) {
return nvinfer1::DimsExprs{3, {inputs->d[0], exprBuilder.constant(static_cast<int>(m_OutputSize)),
exprBuilder.constant(4)}};
}
return nvinfer1::DimsExprs{3, {inputs->d[0], exprBuilder.constant(static_cast<int>(m_OutputSize)),
exprBuilder.constant(1)}};
}
bool
YoloLayer::supportsFormatCombination(INT pos, const nvinfer1::PluginTensorDesc* inOut, INT nbInputs, INT nbOutputs) noexcept
{
return inOut[pos].format == nvinfer1::TensorFormat::kLINEAR && (inOut[pos].type == nvinfer1::DataType::kFLOAT ||
inOut[pos].type == nvinfer1::DataType::kINT32);
}
nvinfer1::DataType
YoloLayer::getOutputDataType(INT index, const nvinfer1::DataType* inputTypes, INT nbInputs) const noexcept
{
assert(index < 3);
if (index == 2) {
return nvinfer1::DataType::kINT32;
}
return nvinfer1::DataType::kFLOAT;
}
void
YoloLayer::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, INT nbInput,
const nvinfer1::DynamicPluginTensorDesc* out, INT nbOutput) noexcept
{
assert(nbInput > 0);
assert(in->desc.format == nvinfer1::PluginFormat::kLINEAR);
assert(in->desc.dims.d != nullptr);
}
INT
YoloLayer::enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
{
INT batchSize = inputDesc[0].dims.d[0];
void* boxes = outputs[0];
void* scores = outputs[1];
void* classes = outputs[2];
uint64_t lastInputSize = 0;
uint yoloTensorsSize = m_YoloTensors.size();
for (uint i = 0; i < yoloTensorsSize; ++i) {
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
const uint numBBoxes = curYoloTensor.numBBoxes;
const float scaleXY = curYoloTensor.scaleXY;
const uint gridSizeX = curYoloTensor.gridSizeX;
const uint gridSizeY = curYoloTensor.gridSizeY;
const std::vector<float> anchors = curYoloTensor.anchors;
const std::vector<int> mask = curYoloTensor.mask;
void* v_anchors;
void* v_mask;
if (anchors.size() > 0) {
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
CUDA_CHECK(cudaMemcpyAsync(v_anchors, anchors.data(), sizeof(float) * anchors.size(), cudaMemcpyHostToDevice, stream));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
CUDA_CHECK(cudaMemcpyAsync(v_mask, mask.data(), sizeof(int) * mask.size(), cudaMemcpyHostToDevice, stream));
}
const uint64_t inputSize = (numBBoxes * (4 + 1 + m_NumClasses)) * gridSizeY * gridSizeX;
if (mask.size() > 0) {
if (m_NewCoords) {
CUDA_CHECK(cudaYoloLayer_nc(inputs[i], boxes, scores, classes, batchSize, inputSize, m_OutputSize, lastInputSize,
m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
else {
CUDA_CHECK(cudaYoloLayer(inputs[i], boxes, scores, classes, batchSize, inputSize, m_OutputSize, lastInputSize,
m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
}
}
else {
void* softmax;
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize, stream));
CUDA_CHECK(cudaRegionLayer(inputs[i], softmax, boxes, scores, classes, batchSize, inputSize, m_OutputSize,
lastInputSize, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors, stream));
CUDA_CHECK(cudaFree(softmax));
}
if (anchors.size() > 0) {
CUDA_CHECK(cudaFree(v_anchors));
}
if (mask.size() > 0) {
CUDA_CHECK(cudaFree(v_mask));
}
lastInputSize += numBBoxes * gridSizeY * gridSizeX;
}
return 0;
}
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);