New features and fixes
This commit is contained in:
@@ -38,19 +38,20 @@ namespace {
|
||||
}
|
||||
}
|
||||
|
||||
cudaError_t cudaYoloLayer_nc(const void* input, void* output, void* count, const uint& batchSize, uint64_t& inputSize,
|
||||
uint64_t& outputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask,
|
||||
cudaStream_t stream);
|
||||
cudaError_t cudaYoloLayer_nc(const void* input, void* boxes, void* scores, void* classes, const uint& batchSize,
|
||||
const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaYoloLayer(const void* input, void* output, void* count, const uint& batchSize, uint64_t& inputSize,
|
||||
uint64_t& outputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY,
|
||||
const uint& numOutputClasses, const uint& numBBoxes, const float& scaleXY, const void* anchors, const void* mask,
|
||||
cudaStream_t stream);
|
||||
cudaError_t cudaYoloLayer(const void* input, void* boxes, void* scores, void* classes, const uint& batchSize,
|
||||
const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize, const uint& netWidth,
|
||||
const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes,
|
||||
const float& scaleXY, const void* anchors, const void* mask, cudaStream_t stream);
|
||||
|
||||
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* output, void* count, const uint& batchSize,
|
||||
uint64_t& inputSize, uint64_t& outputSize, const uint& netWidth, const uint& netHeight, const uint& gridSizeX,
|
||||
const uint& gridSizeY, const uint& numOutputClasses, const uint& numBBoxes, const void* anchors, cudaStream_t stream);
|
||||
cudaError_t cudaRegionLayer(const void* input, void* softmax, void* boxes, void* scores, void* classes,
|
||||
const uint& batchSize, const uint64_t& inputSize, const uint64_t& outputSize, const uint64_t& lastInputSize,
|
||||
const uint& netWidth, const uint& netHeight, const uint& gridSizeX, const uint& gridSizeY, const uint& numOutputClasses,
|
||||
const uint& numBBoxes, const void* anchors, cudaStream_t stream);
|
||||
|
||||
YoloLayer::YoloLayer(const void* data, size_t length) {
|
||||
const char* d = static_cast<const char*>(data);
|
||||
@@ -99,96 +100,10 @@ YoloLayer::YoloLayer(const uint& netWidth, const uint& netHeight, const uint& nu
|
||||
assert(m_NetHeight > 0);
|
||||
};
|
||||
|
||||
nvinfer1::Dims
|
||||
YoloLayer::getOutputDimensions(int index, const nvinfer1::Dims* inputs, int nbInputDims) noexcept
|
||||
nvinfer1::IPluginV2DynamicExt*
|
||||
YoloLayer::clone() const noexcept
|
||||
{
|
||||
assert(index == 0);
|
||||
return nvinfer1::Dims{2, {static_cast<int>(m_OutputSize), 6}};
|
||||
}
|
||||
|
||||
bool
|
||||
YoloLayer::supportsFormat(nvinfer1::DataType type, nvinfer1::PluginFormat format) const noexcept {
|
||||
return (type == nvinfer1::DataType::kFLOAT && format == nvinfer1::PluginFormat::kLINEAR);
|
||||
}
|
||||
|
||||
void
|
||||
YoloLayer::configureWithFormat(const nvinfer1::Dims* inputDims, int nbInputs, const nvinfer1::Dims* outputDims,
|
||||
int nbOutputs, nvinfer1::DataType type, nvinfer1::PluginFormat format, int maxBatchSize) noexcept
|
||||
{
|
||||
assert(nbInputs > 0);
|
||||
assert(format == nvinfer1::PluginFormat::kLINEAR);
|
||||
assert(inputDims != nullptr);
|
||||
}
|
||||
|
||||
#ifdef LEGACY
|
||||
int
|
||||
YoloLayer::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream)
|
||||
#else
|
||||
int32_t
|
||||
YoloLayer::enqueue(int batchSize, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream)
|
||||
noexcept
|
||||
#endif
|
||||
{
|
||||
void* output = outputs[0];
|
||||
CUDA_CHECK(cudaMemsetAsync((float*) output, 0, sizeof(float) * m_OutputSize * 6 * batchSize, stream));
|
||||
|
||||
void* count = workspace;
|
||||
CUDA_CHECK(cudaMemsetAsync((int*) count, 0, sizeof(int) * batchSize, stream));
|
||||
|
||||
uint yoloTensorsSize = m_YoloTensors.size();
|
||||
for (uint i = 0; i < yoloTensorsSize; ++i) {
|
||||
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
|
||||
|
||||
uint numBBoxes = curYoloTensor.numBBoxes;
|
||||
float scaleXY = curYoloTensor.scaleXY;
|
||||
uint gridSizeX = curYoloTensor.gridSizeX;
|
||||
uint gridSizeY = curYoloTensor.gridSizeY;
|
||||
std::vector<float> anchors = curYoloTensor.anchors;
|
||||
std::vector<int> mask = curYoloTensor.mask;
|
||||
|
||||
void* v_anchors;
|
||||
void* v_mask;
|
||||
if (anchors.size() > 0) {
|
||||
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
|
||||
CUDA_CHECK(cudaMemcpyAsync(v_anchors, anchors.data(), sizeof(float) * anchors.size(), cudaMemcpyHostToDevice, stream));
|
||||
}
|
||||
if (mask.size() > 0) {
|
||||
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
|
||||
CUDA_CHECK(cudaMemcpyAsync(v_mask, mask.data(), sizeof(int) * mask.size(), cudaMemcpyHostToDevice, stream));
|
||||
}
|
||||
|
||||
uint64_t inputSize = gridSizeX * gridSizeY * (numBBoxes * (4 + 1 + m_NumClasses));
|
||||
|
||||
if (mask.size() > 0) {
|
||||
if (m_NewCoords) {
|
||||
CUDA_CHECK(cudaYoloLayer_nc(inputs[i], output, count, batchSize, inputSize, m_OutputSize, m_NetWidth, m_NetHeight,
|
||||
gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
|
||||
}
|
||||
else {
|
||||
CUDA_CHECK(cudaYoloLayer(inputs[i], output, count, batchSize, inputSize, m_OutputSize, m_NetWidth, m_NetHeight,
|
||||
gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
|
||||
}
|
||||
}
|
||||
else {
|
||||
void* softmax;
|
||||
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize, stream));
|
||||
|
||||
CUDA_CHECK(cudaRegionLayer(inputs[i], softmax, output, count, batchSize, inputSize, m_OutputSize, m_NetWidth,
|
||||
m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors, stream));
|
||||
|
||||
CUDA_CHECK(cudaFree(softmax));
|
||||
}
|
||||
|
||||
if (anchors.size() > 0) {
|
||||
CUDA_CHECK(cudaFree(v_anchors));
|
||||
}
|
||||
if (mask.size() > 0) {
|
||||
CUDA_CHECK(cudaFree(v_mask));
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
return new YoloLayer(m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize);
|
||||
}
|
||||
|
||||
size_t
|
||||
@@ -250,10 +165,113 @@ YoloLayer::serialize(void* buffer) const noexcept
|
||||
}
|
||||
}
|
||||
|
||||
nvinfer1::IPluginV2*
|
||||
YoloLayer::clone() const noexcept
|
||||
nvinfer1::DimsExprs
|
||||
YoloLayer::getOutputDimensions(INT index, const nvinfer1::DimsExprs* inputs, INT nbInputDims,
|
||||
nvinfer1::IExprBuilder& exprBuilder)noexcept
|
||||
{
|
||||
return new YoloLayer(m_NetWidth, m_NetHeight, m_NumClasses, m_NewCoords, m_YoloTensors, m_OutputSize);
|
||||
assert(index < 3);
|
||||
if (index == 0) {
|
||||
return nvinfer1::DimsExprs{3, {inputs->d[0], exprBuilder.constant(static_cast<int>(m_OutputSize)),
|
||||
exprBuilder.constant(4)}};
|
||||
}
|
||||
return nvinfer1::DimsExprs{3, {inputs->d[0], exprBuilder.constant(static_cast<int>(m_OutputSize)),
|
||||
exprBuilder.constant(1)}};
|
||||
}
|
||||
|
||||
bool
|
||||
YoloLayer::supportsFormatCombination(INT pos, const nvinfer1::PluginTensorDesc* inOut, INT nbInputs, INT nbOutputs) noexcept
|
||||
{
|
||||
return inOut[pos].format == nvinfer1::TensorFormat::kLINEAR && (inOut[pos].type == nvinfer1::DataType::kFLOAT ||
|
||||
inOut[pos].type == nvinfer1::DataType::kINT32);
|
||||
}
|
||||
|
||||
nvinfer1::DataType
|
||||
YoloLayer::getOutputDataType(INT index, const nvinfer1::DataType* inputTypes, INT nbInputs) const noexcept
|
||||
{
|
||||
assert(index < 3);
|
||||
if (index == 2) {
|
||||
return nvinfer1::DataType::kINT32;
|
||||
}
|
||||
return nvinfer1::DataType::kFLOAT;
|
||||
}
|
||||
|
||||
void
|
||||
YoloLayer::configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, INT nbInput,
|
||||
const nvinfer1::DynamicPluginTensorDesc* out, INT nbOutput) noexcept
|
||||
{
|
||||
assert(nbInput > 0);
|
||||
assert(in->desc.format == nvinfer1::PluginFormat::kLINEAR);
|
||||
assert(in->desc.dims.d != nullptr);
|
||||
}
|
||||
|
||||
INT
|
||||
YoloLayer::enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
|
||||
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept
|
||||
{
|
||||
INT batchSize = inputDesc[0].dims.d[0];
|
||||
|
||||
void* boxes = outputs[0];
|
||||
void* scores = outputs[1];
|
||||
void* classes = outputs[2];
|
||||
|
||||
uint64_t lastInputSize = 0;
|
||||
|
||||
uint yoloTensorsSize = m_YoloTensors.size();
|
||||
for (uint i = 0; i < yoloTensorsSize; ++i) {
|
||||
TensorInfo& curYoloTensor = m_YoloTensors.at(i);
|
||||
|
||||
const uint numBBoxes = curYoloTensor.numBBoxes;
|
||||
const float scaleXY = curYoloTensor.scaleXY;
|
||||
const uint gridSizeX = curYoloTensor.gridSizeX;
|
||||
const uint gridSizeY = curYoloTensor.gridSizeY;
|
||||
const std::vector<float> anchors = curYoloTensor.anchors;
|
||||
const std::vector<int> mask = curYoloTensor.mask;
|
||||
|
||||
void* v_anchors;
|
||||
void* v_mask;
|
||||
if (anchors.size() > 0) {
|
||||
CUDA_CHECK(cudaMalloc(&v_anchors, sizeof(float) * anchors.size()));
|
||||
CUDA_CHECK(cudaMemcpyAsync(v_anchors, anchors.data(), sizeof(float) * anchors.size(), cudaMemcpyHostToDevice, stream));
|
||||
}
|
||||
if (mask.size() > 0) {
|
||||
CUDA_CHECK(cudaMalloc(&v_mask, sizeof(int) * mask.size()));
|
||||
CUDA_CHECK(cudaMemcpyAsync(v_mask, mask.data(), sizeof(int) * mask.size(), cudaMemcpyHostToDevice, stream));
|
||||
}
|
||||
|
||||
const uint64_t inputSize = (numBBoxes * (4 + 1 + m_NumClasses)) * gridSizeY * gridSizeX;
|
||||
|
||||
if (mask.size() > 0) {
|
||||
if (m_NewCoords) {
|
||||
CUDA_CHECK(cudaYoloLayer_nc(inputs[i], boxes, scores, classes, batchSize, inputSize, m_OutputSize, lastInputSize,
|
||||
m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
|
||||
}
|
||||
else {
|
||||
CUDA_CHECK(cudaYoloLayer(inputs[i], boxes, scores, classes, batchSize, inputSize, m_OutputSize, lastInputSize,
|
||||
m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, scaleXY, v_anchors, v_mask, stream));
|
||||
}
|
||||
}
|
||||
else {
|
||||
void* softmax;
|
||||
CUDA_CHECK(cudaMalloc(&softmax, sizeof(float) * inputSize * batchSize));
|
||||
CUDA_CHECK(cudaMemsetAsync((float*)softmax, 0, sizeof(float) * inputSize * batchSize, stream));
|
||||
|
||||
CUDA_CHECK(cudaRegionLayer(inputs[i], softmax, boxes, scores, classes, batchSize, inputSize, m_OutputSize,
|
||||
lastInputSize, m_NetWidth, m_NetHeight, gridSizeX, gridSizeY, m_NumClasses, numBBoxes, v_anchors, stream));
|
||||
|
||||
CUDA_CHECK(cudaFree(softmax));
|
||||
}
|
||||
|
||||
if (anchors.size() > 0) {
|
||||
CUDA_CHECK(cudaFree(v_anchors));
|
||||
}
|
||||
if (mask.size() > 0) {
|
||||
CUDA_CHECK(cudaFree(v_mask));
|
||||
}
|
||||
|
||||
lastInputSize += numBBoxes * gridSizeY * gridSizeX;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
REGISTER_TENSORRT_PLUGIN(YoloLayerPluginCreator);
|
||||
|
||||
Reference in New Issue
Block a user