New features and fixes

This commit is contained in:
Marcos Luciano
2023-06-05 14:48:23 -03:00
parent 3f14b0d95d
commit 66a6754b77
57 changed files with 2137 additions and 1534 deletions

View File

@@ -30,33 +30,33 @@
#include "nvdsinfer_custom_impl.h"
extern "C" bool
NvDsInferParseYolo_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseYoloCuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
extern "C" bool
NvDsInferParseYoloE_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseYoloECuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList);
__global__ void decodeTensorYolo_cuda(NvDsInferParseObjectInfo *binfo, float* input, int outputSize, int netW, int netH,
float minPreclusterThreshold)
__global__ void decodeTensorYoloCuda(NvDsInferParseObjectInfo *binfo, float* boxes, float* scores, int* classes,
int outputSize, int netW, int netH, float minPreclusterThreshold)
{
int x_id = blockIdx.x * blockDim.x + threadIdx.x;
if (x_id >= outputSize)
return;
float maxProb = input[x_id * 6 + 4];
int maxIndex = (int) input[x_id * 6 + 5];
float maxProb = scores[x_id];
int maxIndex = classes[x_id];
if (maxProb < minPreclusterThreshold) {
binfo[x_id].detectionConfidence = 0.0;
return;
}
float bxc = input[x_id * 6 + 0];
float byc = input[x_id * 6 + 1];
float bw = input[x_id * 6 + 2];
float bh = input[x_id * 6 + 3];
float bxc = boxes[x_id * 4 + 0];
float byc = boxes[x_id * 4 + 1];
float bw = boxes[x_id * 4 + 2];
float bh = boxes[x_id * 4 + 3];
float x0 = bxc - bw / 2;
float y0 = byc - bh / 2;
@@ -76,26 +76,26 @@ __global__ void decodeTensorYolo_cuda(NvDsInferParseObjectInfo *binfo, float* in
binfo[x_id].classId = maxIndex;
}
__global__ void decodeTensorYoloE_cuda(NvDsInferParseObjectInfo *binfo, float* input, int outputSize, int netW, int netH,
float minPreclusterThreshold)
__global__ void decodeTensorYoloECuda(NvDsInferParseObjectInfo *binfo, float* boxes, float* scores, int* classes,
int outputSize, int netW, int netH, float minPreclusterThreshold)
{
int x_id = blockIdx.x * blockDim.x + threadIdx.x;
if (x_id >= outputSize)
return;
float maxProb = input[x_id * 6 + 4];
int maxIndex = (int) input[x_id * 6 + 5];
float maxProb = scores[x_id];
int maxIndex = classes[x_id];
if (maxProb < minPreclusterThreshold) {
binfo[x_id].detectionConfidence = 0.0;
return;
}
float x0 = input[x_id * 6 + 0];
float y0 = input[x_id * 6 + 1];
float x1 = input[x_id * 6 + 2];
float y1 = input[x_id * 6 + 3];
float x0 = boxes[x_id * 4 + 0];
float y0 = boxes[x_id * 4 + 1];
float x1 = boxes[x_id * 4 + 2];
float y1 = boxes[x_id * 4 + 3];
x0 = fminf(float(netW), fmaxf(float(0.0), x0));
y0 = fminf(float(netH), fmaxf(float(0.0), y0));
@@ -110,7 +110,7 @@ __global__ void decodeTensorYoloE_cuda(NvDsInferParseObjectInfo *binfo, float* i
binfo[x_id].classId = maxIndex;
}
static bool NvDsInferParseCustomYolo_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
static bool NvDsInferParseCustomYoloCuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
{
@@ -119,9 +119,23 @@ static bool NvDsInferParseCustomYolo_cuda(std::vector<NvDsInferLayerInfo> const&
return false;
}
const NvDsInferLayerInfo &layer = outputLayersInfo[0];
NvDsInferLayerInfo* boxes;
NvDsInferLayerInfo* scores;
NvDsInferLayerInfo* classes;
const int outputSize = layer.inferDims.d[0];
for (uint i = 0; i < 3; ++i) {
if (outputLayersInfo[i].dataType == NvDsInferDataType::INT32) {
classes = (NvDsInferLayerInfo*) &outputLayersInfo[i];
}
else if (outputLayersInfo[i].inferDims.d[1] == 4) {
boxes = (NvDsInferLayerInfo*) &outputLayersInfo[i];
}
else {
scores = (NvDsInferLayerInfo*) &outputLayersInfo[i];
}
}
const int outputSize = boxes->inferDims.d[0];
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
@@ -131,9 +145,9 @@ static bool NvDsInferParseCustomYolo_cuda(std::vector<NvDsInferLayerInfo> const&
int threads_per_block = 1024;
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
decodeTensorYolo_cuda<<<number_of_blocks, threads_per_block>>>(
thrust::raw_pointer_cast(objects.data()), (float*) layer.buffer, outputSize, networkInfo.width, networkInfo.height,
minPreclusterThreshold);
decodeTensorYoloCuda<<<number_of_blocks, threads_per_block>>>(
thrust::raw_pointer_cast(objects.data()), (float*) (boxes->buffer), (float*) (scores->buffer),
(int*) (classes->buffer), outputSize, networkInfo.width, networkInfo.height, minPreclusterThreshold);
objectList.resize(outputSize);
thrust::copy(objects.begin(), objects.end(), objectList.begin());
@@ -141,7 +155,7 @@ static bool NvDsInferParseCustomYolo_cuda(std::vector<NvDsInferLayerInfo> const&
return true;
}
static bool NvDsInferParseCustomYoloE_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
static bool NvDsInferParseCustomYoloECuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo, NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
{
@@ -150,9 +164,23 @@ static bool NvDsInferParseCustomYoloE_cuda(std::vector<NvDsInferLayerInfo> const
return false;
}
const NvDsInferLayerInfo &layer = outputLayersInfo[0];
NvDsInferLayerInfo* boxes;
NvDsInferLayerInfo* scores;
NvDsInferLayerInfo* classes;
const int outputSize = layer.inferDims.d[0];
for (uint i = 0; i < 3; ++i) {
if (outputLayersInfo[i].dataType == NvDsInferDataType::INT32) {
classes = (NvDsInferLayerInfo*) &outputLayersInfo[i];
}
else if (outputLayersInfo[i].inferDims.d[1] == 4) {
boxes = (NvDsInferLayerInfo*) &outputLayersInfo[i];
}
else {
scores = (NvDsInferLayerInfo*) &outputLayersInfo[i];
}
}
const int outputSize = boxes->inferDims.d[0];
thrust::device_vector<NvDsInferParseObjectInfo> objects(outputSize);
@@ -162,9 +190,9 @@ static bool NvDsInferParseCustomYoloE_cuda(std::vector<NvDsInferLayerInfo> const
int threads_per_block = 1024;
int number_of_blocks = ((outputSize - 1) / threads_per_block) + 1;
decodeTensorYoloE_cuda<<<number_of_blocks, threads_per_block>>>(
thrust::raw_pointer_cast(objects.data()), (float*) layer.buffer, outputSize, networkInfo.width, networkInfo.height,
minPreclusterThreshold);
decodeTensorYoloECuda<<<number_of_blocks, threads_per_block>>>(
thrust::raw_pointer_cast(objects.data()), (float*) (boxes->buffer), (float*) (scores->buffer),
(int*) (classes->buffer), outputSize, networkInfo.width, networkInfo.height, minPreclusterThreshold);
objectList.resize(outputSize);
thrust::copy(objects.begin(), objects.end(), objectList.begin());
@@ -173,18 +201,18 @@ static bool NvDsInferParseCustomYoloE_cuda(std::vector<NvDsInferLayerInfo> const
}
extern "C" bool
NvDsInferParseYolo_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseYoloCuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
return NvDsInferParseCustomYolo_cuda(outputLayersInfo, networkInfo, detectionParams, objectList);
return NvDsInferParseCustomYoloCuda(outputLayersInfo, networkInfo, detectionParams, objectList);
}
extern "C" bool
NvDsInferParseYoloE_cuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseYoloECuda(std::vector<NvDsInferLayerInfo> const& outputLayersInfo, NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams, std::vector<NvDsInferParseObjectInfo>& objectList)
{
return NvDsInferParseCustomYoloE_cuda(outputLayersInfo, networkInfo, detectionParams, objectList);
return NvDsInferParseCustomYoloECuda(outputLayersInfo, networkInfo, detectionParams, objectList);
}
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo_cuda);
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloE_cuda);
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloCuda);
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYoloECuda);