Fix YOLOv5 accuracy

This commit is contained in:
unknown
2022-02-09 12:55:24 -03:00
parent d9c3cbf41d
commit 5b9b1f77c8
3 changed files with 7 additions and 13 deletions

View File

@@ -29,7 +29,7 @@ nvbuf-memory-type=0
[osd] [osd]
enable=1 enable=1
gpu-id=0 gpu-id=0
border-width=1 border-width=5
text-size=15 text-size=15
text-color=1;1;1;1; text-color=1;1;1;1;
text-bg-color=0.3;0.3;0.3;1 text-bg-color=0.3;0.3;0.3;1

View File

@@ -156,7 +156,7 @@ nvinfer1::ILayer* convolutionalLayer(
} }
for (int i = 0; i < filters; ++i) for (int i = 0; i < filters; ++i)
{ {
bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-5)); bnRunningVar.push_back(sqrt(weights[weightPtr] + 1.0e-3));
weightPtr++; weightPtr++;
} }
trtWeights.push_back(convWt); trtWeights.push_back(convWt);

View File

@@ -240,7 +240,7 @@ with open(cfg_file, "w") as c:
layer += "\n# SPPF\n" layer += "\n# SPPF\n"
layer += "\n[convolutional]\n" layer += "\n[convolutional]\n"
layer += "batch_normalize=1\n" layer += "batch_normalize=1\n"
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple) layer += "filters=%d\n" % (get_width(v[3][0], width_multiple) / 2)
layer += "size=1\n" layer += "size=1\n"
layer += "stride=1\n" layer += "stride=1\n"
layer += "pad=1\n" layer += "pad=1\n"
@@ -250,22 +250,16 @@ with open(cfg_file, "w") as c:
layer += "stride=1\n" layer += "stride=1\n"
layer += "size=%d\n" % v[3][1] layer += "size=%d\n" % v[3][1]
blocks += 1 blocks += 1
layer += "\n[route]\n" layer += "\n[maxpool]\n"
layer += "layers=-2\n" layer += "stride=1\n"
layer += "size=%d\n" % v[3][1]
blocks += 1 blocks += 1
layer += "\n[maxpool]\n" layer += "\n[maxpool]\n"
layer += "stride=1\n" layer += "stride=1\n"
layer += "size=%d\n" % v[3][1] layer += "size=%d\n" % v[3][1]
blocks += 1 blocks += 1
layer += "\n[route]\n" layer += "\n[route]\n"
layer += "layers=-2\n" layer += "layers=-4, -3, -2, -1\n"
blocks += 1
layer += "\n[maxpool]\n"
layer += "stride=1\n"
layer += "size=%d\n" % v[3][1]
blocks += 1
layer += "\n[route]\n"
layer += "layers=-1, -3, -5, -6\n"
blocks += 1 blocks += 1
layer += "\n[convolutional]\n" layer += "\n[convolutional]\n"
layer += "batch_normalize=1\n" layer += "batch_normalize=1\n"