Minor fixes

This commit is contained in:
Marcos Luciano
2022-02-21 23:46:29 -03:00
parent 66962cfeb8
commit 555152064e
29 changed files with 416 additions and 541 deletions

View File

@@ -18,7 +18,7 @@
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Edited by Marcos Luciano
* https://www.github.com/marcoslucianops
*/
@@ -37,103 +37,36 @@ extern "C" bool NvDsInferParseYolo(
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList);
static std::vector<NvDsInferParseObjectInfo>
nonMaximumSuppression(const float nmsThresh, std::vector<NvDsInferParseObjectInfo> binfo)
{
auto overlap1D = [](float x1min, float x1max, float x2min, float x2max) -> float {
if (x1min > x2min)
{
std::swap(x1min, x2min);
std::swap(x1max, x2max);
}
return x1max < x2min ? 0 : std::min(x1max, x2max) - x2min;
};
auto computeIoU
= [&overlap1D](NvDsInferParseObjectInfo& bbox1, NvDsInferParseObjectInfo& bbox2) -> float {
float overlapX
= overlap1D(bbox1.left, bbox1.left + bbox1.width, bbox2.left, bbox2.left + bbox2.width);
float overlapY
= overlap1D(bbox1.top, bbox1.top + bbox1.height, bbox2.top, bbox2.top + bbox2.height);
float area1 = (bbox1.width) * (bbox1.height);
float area2 = (bbox2.width) * (bbox2.height);
float overlap2D = overlapX * overlapY;
float u = area1 + area2 - overlap2D;
return u == 0 ? 0 : overlap2D / u;
};
std::stable_sort(binfo.begin(), binfo.end(),
[](const NvDsInferParseObjectInfo& b1, const NvDsInferParseObjectInfo& b2) {
return b1.detectionConfidence > b2.detectionConfidence;
});
std::vector<NvDsInferParseObjectInfo> out;
for (auto i : binfo)
{
bool keep = true;
for (auto j : out)
{
if (keep)
{
float overlap = computeIoU(i, j);
keep = overlap <= nmsThresh;
}
else
break;
}
if (keep) out.push_back(i);
}
return out;
}
static std::vector<NvDsInferParseObjectInfo>
nmsAllClasses(const float nmsThresh,
std::vector<NvDsInferParseObjectInfo>& binfo,
const uint numClasses)
{
std::vector<NvDsInferParseObjectInfo> result;
std::vector<std::vector<NvDsInferParseObjectInfo>> splitBoxes(numClasses);
for (auto& box : binfo)
{
splitBoxes.at(box.classId).push_back(box);
}
for (auto& boxes : splitBoxes)
{
boxes = nonMaximumSuppression(nmsThresh, boxes);
result.insert(result.end(), boxes.begin(), boxes.end());
}
return result;
}
static NvDsInferParseObjectInfo convertBBox(const float& bx, const float& by, const float& bw,
const float& bh, const int& stride, const uint& netW,
const uint& netH)
static NvDsInferParseObjectInfo convertBBox(
const float& bx, const float& by, const float& bw,
const float& bh, const uint& netW, const uint& netH)
{
NvDsInferParseObjectInfo b;
float xCenter = bx * stride;
float yCenter = by * stride;
float x0 = xCenter - bw / 2;
float y0 = yCenter - bh / 2;
float x1 = x0 + bw;
float y1 = y0 + bh;
x0 = clamp(x0, 0, netW);
y0 = clamp(y0, 0, netH);
float x1 = bx - bw / 2;
float y1 = by - bh / 2;
float x2 = x1 + bw;
float y2 = y1 + bh;
x1 = clamp(x1, 0, netW);
y1 = clamp(y1, 0, netH);
x2 = clamp(x2, 0, netW);
y2 = clamp(y2, 0, netH);
b.left = x0;
b.width = clamp(x1 - x0, 0, netW);
b.top = y0;
b.height = clamp(y1 - y0, 0, netH);
b.left = x1;
b.width = clamp(x2 - x1, 0, netW);
b.top = y1;
b.height = clamp(y2 - y1, 0, netH);
return b;
}
static void addBBoxProposal(const float bx, const float by, const float bw, const float bh,
const uint stride, const uint& netW, const uint& netH, const int maxIndex,
const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
static void addBBoxProposal(
const float bx, const float by, const float bw, const float bh,
const uint& netW, const uint& netH, const int maxIndex,
const float maxProb, std::vector<NvDsInferParseObjectInfo>& binfo)
{
NvDsInferParseObjectInfo bbi = convertBBox(bx, by, bw, bh, stride, netW, netH);
NvDsInferParseObjectInfo bbi = convertBBox(bx, by, bw, bh, netW, netH);
if (bbi.width < 1 || bbi.height < 1) return;
bbi.detectionConfidence = maxProb;
@@ -141,11 +74,10 @@ static void addBBoxProposal(const float bx, const float by, const float bw, cons
binfo.push_back(bbi);
}
static std::vector<NvDsInferParseObjectInfo>
decodeYoloTensor(
static std::vector<NvDsInferParseObjectInfo> decodeYoloTensor(
const float* detections,
const uint gridSizeW, const uint gridSizeH, const uint stride, const uint numBBoxes,
const uint numOutputClasses, const uint& netW, const uint& netH, const float confThresh)
const uint gridSizeW, const uint gridSizeH, const uint numBBoxes,
const uint numOutputClasses, const uint& netW, const uint& netH)
{
std::vector<NvDsInferParseObjectInfo> binfo;
for (uint y = 0; y < gridSizeH; ++y) {
@@ -163,92 +95,32 @@ decodeYoloTensor(
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 2)];
const float bh
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 3)];
const float maxProb
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 4)];
const int maxIndex
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 5)];
if (maxProb > confThresh)
{
addBBoxProposal(bx, by, bw, bh, stride, netW, netH, maxIndex, maxProb, binfo);
}
addBBoxProposal(bx, by, bw, bh, netW, netH, maxIndex, maxProb, binfo);
}
}
}
return binfo;
}
static std::vector<NvDsInferParseObjectInfo>
decodeYoloV2Tensor(
const float* detections,
const uint gridSizeW, const uint gridSizeH, const uint stride, const uint numBBoxes,
const uint numOutputClasses, const uint& netW, const uint& netH)
{
std::vector<NvDsInferParseObjectInfo> binfo;
for (uint y = 0; y < gridSizeH; ++y) {
for (uint x = 0; x < gridSizeW; ++x) {
for (uint b = 0; b < numBBoxes; ++b)
{
const int numGridCells = gridSizeH * gridSizeW;
const int bbindex = y * gridSizeW + x;
const float bx
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 0)];
const float by
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 1)];
const float bw
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 2)] * stride;
const float bh
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 3)] * stride;
const float maxProb
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 4)];
const int maxIndex
= detections[bbindex + numGridCells * (b * (5 + numOutputClasses) + 5)];
addBBoxProposal(bx, by, bw, bh, stride, netW, netH, maxIndex, maxProb, binfo);
}
}
}
return binfo;
}
static inline std::vector<const NvDsInferLayerInfo*>
SortLayers(const std::vector<NvDsInferLayerInfo> & outputLayersInfo)
{
std::vector<const NvDsInferLayerInfo*> outLayers;
for (auto const &layer : outputLayersInfo) {
outLayers.push_back (&layer);
}
std::sort(outLayers.begin(), outLayers.end(),
[](const NvDsInferLayerInfo* a, const NvDsInferLayerInfo* b) {
return a->inferDims.d[1] < b->inferDims.d[1];
});
return outLayers;
}
static bool NvDsInferParseYolo(
static bool NvDsInferParseCustomYolo(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList,
const uint &numBBoxes,
const uint &numClasses,
const float &betaNMS)
const uint &numClasses)
{
if (outputLayersInfo.empty()) {
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;;
if (outputLayersInfo.empty())
{
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;
return false;
}
const float kCONF_THRESH = detectionParams.perClassThreshold[0];
const std::vector<const NvDsInferLayerInfo*> sortedLayers =
SortLayers (outputLayersInfo);
if (numClasses != detectionParams.numClassesConfigured)
{
std::cerr << "WARNING: Num classes mismatch. Configured: "
@@ -258,57 +130,23 @@ static bool NvDsInferParseYolo(
std::vector<NvDsInferParseObjectInfo> objects;
for (uint idx = 0; idx < sortedLayers.size(); ++idx) {
const NvDsInferLayerInfo &layer = *sortedLayers[idx]; // 255 x Grid x Grid
for (uint idx = 0; idx < outputLayersInfo.size(); ++idx)
{
const NvDsInferLayerInfo &layer = outputLayersInfo[idx];
assert(layer.inferDims.numDims == 3);
const uint gridSizeH = layer.inferDims.d[1];
const uint gridSizeW = layer.inferDims.d[2];
const uint stride = DIVUP(networkInfo.width, gridSizeW);
std::vector<NvDsInferParseObjectInfo> outObjs =
decodeYoloTensor((const float*)(layer.buffer), gridSizeW, gridSizeH, stride, numBBoxes,
numClasses, networkInfo.width, networkInfo.height, kCONF_THRESH);
decodeYoloTensor(
(const float*)(layer.buffer),
gridSizeW, gridSizeH, numBBoxes, numClasses,
networkInfo.width, networkInfo.height);
objects.insert(objects.end(), outObjs.begin(), outObjs.end());
}
objectList.clear();
objectList = nmsAllClasses(betaNMS, objects, numClasses);
return true;
}
static bool NvDsInferParseYoloV2(
std::vector<NvDsInferLayerInfo> const& outputLayersInfo,
NvDsInferNetworkInfo const& networkInfo,
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList,
const uint &numBBoxes,
const uint &numClasses)
{
if (outputLayersInfo.empty()) {
std::cerr << "ERROR: Could not find output layer in bbox parsing" << std::endl;;
return false;
}
const NvDsInferLayerInfo &layer = outputLayersInfo[0];
if (numClasses != detectionParams.numClassesConfigured)
{
std::cerr << "WARNING: Num classes mismatch. Configured: "
<< detectionParams.numClassesConfigured
<< ", detected by network: " << numClasses << std::endl;
}
assert(layer.inferDims.numDims == 3);
const uint gridSizeH = layer.inferDims.d[1];
const uint gridSizeW = layer.inferDims.d[2];
const uint stride = DIVUP(networkInfo.width, gridSizeW);
std::vector<NvDsInferParseObjectInfo> objects =
decodeYoloV2Tensor((const float*)(layer.buffer), gridSizeW, gridSizeH, stride, numBBoxes,
numClasses, networkInfo.width, networkInfo.height);
objectList = objects;
return true;
@@ -320,19 +158,11 @@ extern "C" bool NvDsInferParseYolo(
NvDsInferParseDetectionParams const& detectionParams,
std::vector<NvDsInferParseObjectInfo>& objectList)
{
int model_type = kMODEL_TYPE;
int num_bboxes = kNUM_BBOXES;
int num_classes = kNUM_CLASSES;
float beta_nms = kBETA_NMS;
uint numBBoxes = kNUM_BBOXES;
uint numClasses = kNUM_CLASSES;
if (model_type != 0) {
return NvDsInferParseYolo (outputLayersInfo, networkInfo, detectionParams, objectList,
num_bboxes, num_classes, beta_nms);
}
else {
return NvDsInferParseYoloV2 (outputLayersInfo, networkInfo, detectionParams, objectList,
num_bboxes, num_classes);
}
return NvDsInferParseCustomYolo (
outputLayersInfo, networkInfo, detectionParams, objectList, numBBoxes, numClasses);
}
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo);
CHECK_CUSTOM_PARSE_FUNC_PROTOTYPE(NvDsInferParseYolo);