Update gen_wts
This commit is contained in:
@@ -17,70 +17,62 @@ class YoloLayers():
|
||||
break
|
||||
return route
|
||||
|
||||
def route(self, layers=""):
|
||||
return "\n[route]\n" + \
|
||||
"layers=%s\n" % layers
|
||||
def route(self, layers=''):
|
||||
return '\n[route]\n' + \
|
||||
'layers=%s\n' % layers
|
||||
|
||||
def reorg(self):
|
||||
return "\n[reorg]\n"
|
||||
return '\n[reorg]\n'
|
||||
|
||||
def shortcut(self, route=-1, activation="linear"):
|
||||
return "\n[shortcut]\n" + \
|
||||
"from=%d\n" % route + \
|
||||
"activation=%s\n" % activation
|
||||
def shortcut(self, route=-1, activation='linear'):
|
||||
return '\n[shortcut]\n' + \
|
||||
'from=%d\n' % route + \
|
||||
'activation=%s\n' % activation
|
||||
|
||||
def maxpool(self, stride=1, size=1):
|
||||
return "\n[maxpool]\n" + \
|
||||
"stride=%d\n" % stride + \
|
||||
"size=%d\n" % size
|
||||
return '\n[maxpool]\n' + \
|
||||
'stride=%d\n' % stride + \
|
||||
'size=%d\n' % size
|
||||
|
||||
def upsample(self, stride=1):
|
||||
return "\n[upsample]\n" + \
|
||||
"stride=%d\n" % stride
|
||||
return '\n[upsample]\n' + \
|
||||
'stride=%d\n' % stride
|
||||
|
||||
def convolutional(self, bn=False, size=1, stride=1, pad=1, filters=1, groups=1, activation="linear"):
|
||||
b = "batch_normalize=1\n" if bn is True else ""
|
||||
g = "groups=%d\n" % groups if groups > 1 else ""
|
||||
return "\n[convolutional]\n" + \
|
||||
def convolutional(self, bn=False, size=1, stride=1, pad=1, filters=1, groups=1, activation='linear'):
|
||||
b = 'batch_normalize=1\n' if bn is True else ''
|
||||
g = 'groups=%d\n' % groups if groups > 1 else ''
|
||||
return '\n[convolutional]\n' + \
|
||||
b + \
|
||||
"filters=%d\n" % filters + \
|
||||
"size=%d\n" % size + \
|
||||
"stride=%d\n" % stride + \
|
||||
"pad=%d\n" % pad + \
|
||||
'filters=%d\n' % filters + \
|
||||
'size=%d\n' % size + \
|
||||
'stride=%d\n' % stride + \
|
||||
'pad=%d\n' % pad + \
|
||||
g + \
|
||||
"activation=%s\n" % activation
|
||||
'activation=%s\n' % activation
|
||||
|
||||
def yolo(self, mask="", anchors="", classes=80, num=3):
|
||||
return "\n[yolo]\n" + \
|
||||
"mask=%s\n" % mask + \
|
||||
"anchors=%s\n" % anchors + \
|
||||
"classes=%d\n" % classes + \
|
||||
"num=%d\n" % num + \
|
||||
"scale_x_y=2.0\n" + \
|
||||
"beta_nms=0.6\n" + \
|
||||
"new_coords=1\n"
|
||||
def yolo(self, mask='', anchors='', classes=80, num=3):
|
||||
return '\n[yolo]\n' + \
|
||||
'mask=%s\n' % mask + \
|
||||
'anchors=%s\n' % anchors + \
|
||||
'classes=%d\n' % classes + \
|
||||
'num=%d\n' % num + \
|
||||
'scale_x_y=2.0\n' + \
|
||||
'beta_nms=0.6\n' + \
|
||||
'new_coords=1\n'
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="PyTorch YOLOv5 conversion")
|
||||
parser.add_argument("-w", "--weights", required=True, help="Input weights (.pt) file path (required)")
|
||||
parser.add_argument("-c", "--yaml", help="Input cfg (.yaml) file path")
|
||||
parser.add_argument("-mw", "--width", type=int, help="Model width (default = 640 / 1280 [P6])")
|
||||
parser.add_argument("-mh", "--height", type=int, help="Model height (default = 640 / 1280 [P6])")
|
||||
parser.add_argument("-mc", "--channels", type=int, help="Model channels (default = 3)")
|
||||
parser.add_argument("--p6", action="store_true", help="P6 model")
|
||||
parser = argparse.ArgumentParser(description='PyTorch YOLOv5 conversion')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-c', '--yaml', help='Input cfg (.yaml) file path')
|
||||
parser.add_argument(
|
||||
'-s', '--size', nargs='+', type=int, default=[640], help='Inference size [H,W] (default [640])')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit("Invalid weights file")
|
||||
raise SystemExit('Invalid weights file')
|
||||
if not args.yaml:
|
||||
args.yaml = ""
|
||||
if not args.width:
|
||||
args.width = 1280 if args.p6 else 640
|
||||
if not args.height:
|
||||
args.height = 1280 if args.p6 else 640
|
||||
if not args.channels:
|
||||
args.channels = 3
|
||||
return args.weights, args.yaml, args.width, args.height, args.channels, args.p6
|
||||
args.yaml = ''
|
||||
return args.weights, args.yaml, args.size
|
||||
|
||||
|
||||
def get_width(x, gw, divisor=8):
|
||||
@@ -96,40 +88,40 @@ def get_depth(x, gd):
|
||||
return max(r, 1)
|
||||
|
||||
|
||||
pt_file, yaml_file, model_width, model_height, model_channels, p6 = parse_args()
|
||||
pt_file, yaml_file, inference_size = parse_args()
|
||||
|
||||
model_name = pt_file.split(".pt")[0]
|
||||
wts_file = model_name + ".wts" if "yolov5" in model_name else "yolov5_" + model_name + ".wts"
|
||||
cfg_file = model_name + ".cfg" if "yolov5" in model_name else "yolov5_" + model_name + ".cfg"
|
||||
model_name = os.path.basename(pt_file).split('.pt')[0]
|
||||
wts_file = model_name + '.wts' if 'yolov5' in model_name else 'yolov5_' + model_name + '.wts'
|
||||
cfg_file = model_name + '.cfg' if 'yolov5' in model_name else 'yolov5_' + model_name + '.cfg'
|
||||
|
||||
if yaml_file == "":
|
||||
yaml_file = "models/" + model_name + ".yaml"
|
||||
if yaml_file == '':
|
||||
yaml_file = 'models/' + model_name + '.yaml'
|
||||
if not os.path.isfile(yaml_file):
|
||||
yaml_file = "models/hub/" + model_name + ".yaml"
|
||||
yaml_file = 'models/hub/' + model_name + '.yaml'
|
||||
if not os.path.isfile(yaml_file):
|
||||
raise SystemExit("YAML file not found")
|
||||
raise SystemExit('YAML file not found')
|
||||
elif not os.path.isfile(yaml_file):
|
||||
raise SystemExit("Invalid YAML file")
|
||||
raise SystemExit('Invalid YAML file')
|
||||
|
||||
device = select_device("cpu")
|
||||
model = torch.load(pt_file, map_location=device)["model"].float()
|
||||
device = select_device('cpu')
|
||||
model = torch.load(pt_file, map_location=device)['model'].float()
|
||||
|
||||
anchor_grid = model.model[-1].anchors * model.model[-1].stride[..., None, None]
|
||||
delattr(model.model[-1], "anchor_grid")
|
||||
model.model[-1].register_buffer("anchor_grid", anchor_grid)
|
||||
delattr(model.model[-1], 'anchor_grid')
|
||||
model.model[-1].register_buffer('anchor_grid', anchor_grid)
|
||||
|
||||
model.to(device).eval()
|
||||
|
||||
nc = 0
|
||||
anchors = ""
|
||||
anchors = ''
|
||||
masks = []
|
||||
|
||||
yolo_idx = 0
|
||||
spp_idx = 0
|
||||
|
||||
for k, v in model.state_dict().items():
|
||||
if "anchor_grid" in k:
|
||||
yolo_idx = int(k.split(".")[1])
|
||||
if 'anchor_grid' in k:
|
||||
yolo_idx = int(k.split('.')[1])
|
||||
vr = v.cpu().numpy().tolist()
|
||||
a = v.reshape(-1).cpu().numpy().astype(float).tolist()
|
||||
anchors = str(a)[1:-1]
|
||||
@@ -140,116 +132,116 @@ for k, v in model.state_dict().items():
|
||||
mask.append(num)
|
||||
num += 1
|
||||
masks.append(mask)
|
||||
elif ".%d.m.0.weight" % yolo_idx in k:
|
||||
elif '.%d.m.0.weight' % yolo_idx in k:
|
||||
vr = v.cpu().numpy().tolist()
|
||||
nc = int((len(vr) / len(masks[0])) - 5)
|
||||
|
||||
with open(cfg_file, "w") as c:
|
||||
with open(yaml_file, "r", encoding="utf-8") as f:
|
||||
c.write("[net]\n")
|
||||
c.write("width=%d\n" % model_width)
|
||||
c.write("height=%d\n" % model_height)
|
||||
c.write("channels=%d\n" % model_channels)
|
||||
c.write("letter_box=1\n")
|
||||
with open(cfg_file, 'w') as c:
|
||||
with open(yaml_file, 'r', encoding='utf-8') as f:
|
||||
c.write('[net]\n')
|
||||
c.write('width=%d\n' % (inference_size[0] if len(inference_size) == 1 else inference_size[1]))
|
||||
c.write('height=%d\n' % inference_size[0])
|
||||
c.write('channels=3\n')
|
||||
c.write('letter_box=1\n')
|
||||
depth_multiple = 0
|
||||
width_multiple = 0
|
||||
layers = []
|
||||
yoloLayers = YoloLayers()
|
||||
f = yaml.load(f, Loader=yaml.FullLoader)
|
||||
for topic in f:
|
||||
if topic == "depth_multiple":
|
||||
if topic == 'depth_multiple':
|
||||
depth_multiple = f[topic]
|
||||
elif topic == "width_multiple":
|
||||
elif topic == 'width_multiple':
|
||||
width_multiple = f[topic]
|
||||
elif topic == "backbone" or topic == "head":
|
||||
elif topic == 'backbone' or topic == 'head':
|
||||
for v in f[topic]:
|
||||
if v[2] == "Focus":
|
||||
layer = "\n# Focus\n"
|
||||
if v[2] == 'Focus':
|
||||
layer = '\n# Focus\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.reorg()
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), size=v[3][1],
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
if v[2] == "Conv":
|
||||
layer = "\n# Conv\n"
|
||||
if v[2] == 'Conv':
|
||||
layer = '\n# Conv\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), size=v[3][1],
|
||||
stride=v[3][2], activation="silu")
|
||||
stride=v[3][2], activation='silu')
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "C3":
|
||||
layer = "\n# C3\n"
|
||||
elif v[2] == 'C3':
|
||||
layer = '\n# C3\n'
|
||||
blocks = 0
|
||||
# SPLIT
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layer += yoloLayers.route(layers="-2")
|
||||
layer += yoloLayers.route(layers='-2')
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
# Residual Block
|
||||
if len(v[3]) == 1 or v[3][1] is True:
|
||||
for _ in range(get_depth(v[1], depth_multiple)):
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
size=3, activation="silu")
|
||||
size=3, activation='silu')
|
||||
blocks += 1
|
||||
layer += yoloLayers.shortcut(route=-3)
|
||||
blocks += 1
|
||||
# Merge
|
||||
layer += yoloLayers.route(layers="-1, -%d" % (3 * get_depth(v[1], depth_multiple) + 3))
|
||||
layer += yoloLayers.route(layers='-1, -%d' % (3 * get_depth(v[1], depth_multiple) + 3))
|
||||
blocks += 1
|
||||
else:
|
||||
for _ in range(get_depth(v[1], depth_multiple)):
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
size=3, activation="silu")
|
||||
size=3, activation='silu')
|
||||
blocks += 1
|
||||
# Merge
|
||||
layer += yoloLayers.route(layers="-1, -%d" % (2 * get_depth(v[1], depth_multiple) + 3))
|
||||
layer += yoloLayers.route(layers='-1, -%d' % (2 * get_depth(v[1], depth_multiple) + 3))
|
||||
blocks += 1
|
||||
# Transition
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "SPP":
|
||||
elif v[2] == 'SPP':
|
||||
spp_idx = len(layers)
|
||||
layer = "\n# SPP\n"
|
||||
layer = '\n# SPP\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layer += yoloLayers.maxpool(size=v[3][1][0])
|
||||
blocks += 1
|
||||
layer += yoloLayers.route(layers="-2")
|
||||
layer += yoloLayers.route(layers='-2')
|
||||
blocks += 1
|
||||
layer += yoloLayers.maxpool(size=v[3][1][1])
|
||||
blocks += 1
|
||||
layer += yoloLayers.route(layers="-4")
|
||||
layer += yoloLayers.route(layers='-4')
|
||||
blocks += 1
|
||||
layer += yoloLayers.maxpool(size=v[3][1][2])
|
||||
blocks += 1
|
||||
layer += yoloLayers.route(layers="-6, -5, -3, -1")
|
||||
layer += yoloLayers.route(layers='-6, -5, -3, -1')
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "SPPF":
|
||||
elif v[2] == 'SPPF':
|
||||
spp_idx = len(layers)
|
||||
layer = "\n# SPPF\n"
|
||||
layer = '\n# SPPF\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layer += yoloLayers.maxpool(size=v[3][1])
|
||||
blocks += 1
|
||||
@@ -257,35 +249,35 @@ with open(cfg_file, "w") as c:
|
||||
blocks += 1
|
||||
layer += yoloLayers.maxpool(size=v[3][1])
|
||||
blocks += 1
|
||||
layer += yoloLayers.route(layers="-4, -3, -2, -1")
|
||||
layer += yoloLayers.route(layers='-4, -3, -2, -1')
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
|
||||
activation="silu")
|
||||
activation='silu')
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "nn.Upsample":
|
||||
layer = "\n# nn.Upsample\n"
|
||||
elif v[2] == 'nn.Upsample':
|
||||
layer = '\n# nn.Upsample\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.upsample(stride=v[3][1])
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "Concat":
|
||||
elif v[2] == 'Concat':
|
||||
route = v[0][1]
|
||||
route = yoloLayers.get_route(route, layers) if route > 0 else \
|
||||
yoloLayers.get_route(len(layers) + route, layers)
|
||||
layer = "\n# Concat\n"
|
||||
layer = '\n# Concat\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.route(layers="-1, %d" % (route - 1))
|
||||
layer += yoloLayers.route(layers='-1, %d' % (route - 1))
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "Detect":
|
||||
elif v[2] == 'Detect':
|
||||
for i, n in enumerate(v[0]):
|
||||
route = yoloLayers.get_route(n, layers)
|
||||
layer = "\n# Detect\n"
|
||||
layer = '\n# Detect\n'
|
||||
blocks = 0
|
||||
layer += yoloLayers.route(layers="%d" % (route - 1))
|
||||
layer += yoloLayers.route(layers='%d' % (route - 1))
|
||||
blocks += 1
|
||||
layer += yoloLayers.convolutional(filters=((nc + 5) * len(masks[i])), activation="logistic")
|
||||
layer += yoloLayers.convolutional(filters=((nc + 5) * len(masks[i])), activation='logistic')
|
||||
blocks += 1
|
||||
layer += yoloLayers.yolo(mask=str(masks[i])[1:-1], anchors=anchors, classes=nc, num=num)
|
||||
blocks += 1
|
||||
@@ -293,44 +285,44 @@ with open(cfg_file, "w") as c:
|
||||
for layer in layers:
|
||||
c.write(layer[0])
|
||||
|
||||
with open(wts_file, "w") as f:
|
||||
wts_write = ""
|
||||
with open(wts_file, 'w') as f:
|
||||
wts_write = ''
|
||||
conv_count = 0
|
||||
cv1 = ""
|
||||
cv3 = ""
|
||||
cv1 = ''
|
||||
cv3 = ''
|
||||
cv3_idx = 0
|
||||
for k, v in model.state_dict().items():
|
||||
if "num_batches_tracked" not in k and "anchors" not in k and "anchor_grid" not in k:
|
||||
if 'num_batches_tracked' not in k and 'anchors' not in k and 'anchor_grid' not in k:
|
||||
vr = v.reshape(-1).cpu().numpy()
|
||||
idx = int(k.split(".")[1])
|
||||
if ".cv1." in k and ".m." not in k and idx != spp_idx:
|
||||
cv1 += "{} {} ".format(k, len(vr))
|
||||
idx = int(k.split('.')[1])
|
||||
if '.cv1.' in k and '.m.' not in k and idx != spp_idx:
|
||||
cv1 += '{} {} '.format(k, len(vr))
|
||||
for vv in vr:
|
||||
cv1 += " "
|
||||
cv1 += struct.pack(">f", float(vv)).hex()
|
||||
cv1 += "\n"
|
||||
cv1 += ' '
|
||||
cv1 += struct.pack('>f', float(vv)).hex()
|
||||
cv1 += '\n'
|
||||
conv_count += 1
|
||||
elif cv1 != "" and ".m." in k:
|
||||
elif cv1 != '' and '.m.' in k:
|
||||
wts_write += cv1
|
||||
cv1 = ""
|
||||
if ".cv3." in k:
|
||||
cv3 += "{} {} ".format(k, len(vr))
|
||||
cv1 = ''
|
||||
if '.cv3.' in k:
|
||||
cv3 += '{} {} '.format(k, len(vr))
|
||||
for vv in vr:
|
||||
cv3 += " "
|
||||
cv3 += struct.pack(">f", float(vv)).hex()
|
||||
cv3 += "\n"
|
||||
cv3 += ' '
|
||||
cv3 += struct.pack('>f', float(vv)).hex()
|
||||
cv3 += '\n'
|
||||
cv3_idx = idx
|
||||
conv_count += 1
|
||||
elif cv3 != "" and cv3_idx != idx:
|
||||
elif cv3 != '' and cv3_idx != idx:
|
||||
wts_write += cv3
|
||||
cv3 = ""
|
||||
cv3 = ''
|
||||
cv3_idx = 0
|
||||
if ".cv3." not in k and not (".cv1." in k and ".m." not in k and idx != spp_idx):
|
||||
wts_write += "{} {} ".format(k, len(vr))
|
||||
if '.cv3.' not in k and not ('.cv1.' in k and '.m.' not in k and idx != spp_idx):
|
||||
wts_write += '{} {} '.format(k, len(vr))
|
||||
for vv in vr:
|
||||
wts_write += " "
|
||||
wts_write += struct.pack(">f", float(vv)).hex()
|
||||
wts_write += "\n"
|
||||
wts_write += ' '
|
||||
wts_write += struct.pack('>f', float(vv)).hex()
|
||||
wts_write += '\n'
|
||||
conv_count += 1
|
||||
f.write("{}\n".format(conv_count))
|
||||
f.write('{}\n'.format(conv_count))
|
||||
f.write(wts_write)
|
||||
|
||||
@@ -7,39 +7,50 @@ from models.models import Darknet
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="PyTorch YOLOR conversion (main branch)")
|
||||
parser.add_argument("-w", "--weights", required=True, help="Input weights (.pt) file path (required)")
|
||||
parser.add_argument("-c", "--cfg", required=True, help="Input cfg (.cfg) file path (required)")
|
||||
parser = argparse.ArgumentParser(description='PyTorch YOLOR conversion (main branch)')
|
||||
parser.add_argument('-w', '--weights', required=True, help='Input weights (.pt) file path (required)')
|
||||
parser.add_argument('-c', '--cfg', help='Input cfg (.cfg) file path')
|
||||
args = parser.parse_args()
|
||||
if not os.path.isfile(args.weights):
|
||||
raise SystemExit("Invalid weights file")
|
||||
raise SystemExit('Invalid weights file')
|
||||
if not os.path.isfile(args.cfg):
|
||||
raise SystemExit("Invalid cfg file")
|
||||
raise SystemExit('Invalid cfg file')
|
||||
return args.weights, args.cfg
|
||||
|
||||
|
||||
pt_file, cfg_file = parse_args()
|
||||
|
||||
wts_file = "%s.wts" % cfg_file.rsplit("/")[1].split(".cfg")[0]
|
||||
|
||||
device = select_device("cpu")
|
||||
model_name = os.path.basename(pt_file).split('.pt')[0]
|
||||
wts_file = model_name + '.wts' if 'yolor' in model_name else 'yolor_' + model_name + '.wts'
|
||||
new_cfg_file = model_name + '.cfg' if 'yolor' in model_name else 'yolor_' + model_name + '.cfg'
|
||||
|
||||
if cfg_file == '':
|
||||
cfg_file = 'cfg/' + model_name + '.cfg'
|
||||
if not os.path.isfile(cfg_file):
|
||||
raise SystemExit('CFG file not found')
|
||||
elif not os.path.isfile(cfg_file):
|
||||
raise SystemExit('Invalid CFG file')
|
||||
|
||||
device = select_device('cpu')
|
||||
model = Darknet(cfg_file).to(device)
|
||||
model.load_state_dict(torch.load(pt_file, map_location=device)["model"])
|
||||
model.load_state_dict(torch.load(pt_file, map_location=device)['model'])
|
||||
model.to(device).eval()
|
||||
|
||||
with open(wts_file, "w") as f:
|
||||
wts_write = ""
|
||||
with open(wts_file, 'w') as f:
|
||||
wts_write = ''
|
||||
conv_count = 0
|
||||
for k, v in model.state_dict().items():
|
||||
if "num_batches_tracked" not in k:
|
||||
if 'num_batches_tracked' not in k:
|
||||
vr = v.reshape(-1).cpu().numpy()
|
||||
wts_write += "{} {} ".format(k, len(vr))
|
||||
wts_write += '{} {} '.format(k, len(vr))
|
||||
for vv in vr:
|
||||
wts_write += " "
|
||||
wts_write += struct.pack(">f", float(vv)).hex()
|
||||
wts_write += "\n"
|
||||
wts_write += ' '
|
||||
wts_write += struct.pack('>f', float(vv)).hex()
|
||||
wts_write += '\n'
|
||||
conv_count += 1
|
||||
f.write("{}\n".format(conv_count))
|
||||
f.write('{}\n'.format(conv_count))
|
||||
f.write(wts_write)
|
||||
|
||||
os.system("cp %s ./" % cfg_file)
|
||||
if not os.path.isfile(new_cfg_file):
|
||||
os.system('cp %s %s' % (cfg_file, new_cfg_file))
|
||||
|
||||
Reference in New Issue
Block a user