Minor fixes
This commit is contained in:
@@ -7,6 +7,57 @@ import torch
|
||||
from utils.torch_utils import select_device
|
||||
|
||||
|
||||
class YoloLayers():
|
||||
def get_route(self, n, layers):
|
||||
route = 0
|
||||
for i, layer in enumerate(layers):
|
||||
if i <= n:
|
||||
route += layer[1]
|
||||
else:
|
||||
break
|
||||
return route
|
||||
|
||||
def route(self, layers=""):
|
||||
return "\n[route]\n" + \
|
||||
"layers=%s\n" % layers
|
||||
|
||||
def shortcut(self, route=-1, activation="linear"):
|
||||
return "\n[shortcut]\n" + \
|
||||
"from=%d\n" % route + \
|
||||
"activation=%s\n" % activation
|
||||
|
||||
def maxpool(self, stride=1, size=1):
|
||||
return "\n[maxpool]\n" + \
|
||||
"stride=%d\n" % stride + \
|
||||
"size=%d\n" % size
|
||||
|
||||
def upsample(self, stride=1):
|
||||
return "\n[upsample]\n" + \
|
||||
"stride=%d\n" % stride
|
||||
|
||||
def convolutional(self, bn=False, size=1, stride=1, pad=1, filters=1, groups=1, activation="linear"):
|
||||
b = "batch_normalize=1\n" if bn is True else ""
|
||||
g = "groups=%d\n" % groups if groups > 1 else ""
|
||||
return "\n[convolutional]\n" + \
|
||||
b + \
|
||||
"filters=%d\n" % filters + \
|
||||
"size=%d\n" % size + \
|
||||
"stride=%d\n" % stride + \
|
||||
"pad=%d\n" % pad + \
|
||||
g + \
|
||||
"activation=%s\n" % activation
|
||||
|
||||
def yolo(self, mask="", anchors="", classes=80, num=3):
|
||||
return "\n[yolo]\n" + \
|
||||
"mask=%s\n" % mask + \
|
||||
"anchors=%s\n" % anchors + \
|
||||
"classes=%d\n" % classes + \
|
||||
"num=%d\n" % num + \
|
||||
"scale_x_y=2.0\n" + \
|
||||
"beta_nms=0.6\n" + \
|
||||
"new_coords=1\n"
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description="PyTorch YOLOv5 conversion")
|
||||
parser.add_argument("-w", "--weights", required=True, help="Input weights (.pt) file path (required)")
|
||||
@@ -77,10 +128,10 @@ with open(wts_file, "w") as f:
|
||||
cv3_idx = 0
|
||||
sppf_idx = 11 if p6 else 9
|
||||
for k, v in model.state_dict().items():
|
||||
if not "num_batches_tracked" in k and not "anchors" in k and not "anchor_grid" in k:
|
||||
if "num_batches_tracked" not in k and "anchors" not in k and "anchor_grid" not in k:
|
||||
vr = v.reshape(-1).cpu().numpy()
|
||||
idx = int(k.split(".")[1])
|
||||
if ".cv1." in k and not ".m." in k and idx != sppf_idx:
|
||||
if ".cv1." in k and ".m." not in k and idx != sppf_idx:
|
||||
cv1 += "{} {} ".format(k, len(vr))
|
||||
for vv in vr:
|
||||
cv1 += " "
|
||||
@@ -102,7 +153,7 @@ with open(wts_file, "w") as f:
|
||||
wts_write += cv3
|
||||
cv3 = ""
|
||||
cv3_idx = 0
|
||||
if not ".cv3." in k and not (".cv1." in k and not ".m." in k and idx != sppf_idx):
|
||||
if ".cv3." not in k and not (".cv1." in k and ".m." not in k and idx != sppf_idx):
|
||||
wts_write += "{} {} ".format(k, len(vr))
|
||||
for vv in vr:
|
||||
wts_write += " "
|
||||
@@ -125,219 +176,117 @@ with open(wts_file, "w") as f:
|
||||
|
||||
with open(cfg_file, "w") as c:
|
||||
with open(yaml_file, "r", encoding="utf-8") as f:
|
||||
nc = 0
|
||||
depth_multiple = 0
|
||||
width_multiple = 0
|
||||
detections = []
|
||||
layers = []
|
||||
f = yaml.load(f,Loader=yaml.FullLoader)
|
||||
c.write("[net]\n")
|
||||
c.write("width=%d\n" % model_width)
|
||||
c.write("height=%d\n" % model_height)
|
||||
c.write("channels=%d\n" % model_channels)
|
||||
for l in f:
|
||||
if l == "nc":
|
||||
nc = f[l]
|
||||
elif l == "depth_multiple":
|
||||
depth_multiple = f[l]
|
||||
elif l == "width_multiple":
|
||||
width_multiple = f[l]
|
||||
elif l == "backbone" or l == "head":
|
||||
for v in f[l]:
|
||||
nc = 0
|
||||
depth_multiple = 0
|
||||
width_multiple = 0
|
||||
layers = []
|
||||
yoloLayers = YoloLayers()
|
||||
f = yaml.load(f, Loader=yaml.FullLoader)
|
||||
for topic in f:
|
||||
if topic == "nc":
|
||||
nc = f[topic]
|
||||
elif topic == "depth_multiple":
|
||||
depth_multiple = f[topic]
|
||||
elif topic == "width_multiple":
|
||||
width_multiple = f[topic]
|
||||
elif topic == "backbone" or topic == "head":
|
||||
for v in f[topic]:
|
||||
if v[2] == "Conv":
|
||||
layer = ""
|
||||
layer = "\n# Conv\n"
|
||||
blocks = 0
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0], width_multiple)
|
||||
layer += "size=%d\n" % v[3][1]
|
||||
layer += "stride=%d\n" % v[3][2]
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple), size=v[3][1],
|
||||
stride=v[3][2], activation="silu")
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "C3":
|
||||
layer = ""
|
||||
layer = "\n# C3\n"
|
||||
blocks = 0
|
||||
layer += "\n# C3\n"
|
||||
# SPLIT
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
layer += "\n[route]\n"
|
||||
layer += "layers=-2\n"
|
||||
layer += yoloLayers.route(layers="-2")
|
||||
blocks += 1
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
# Residual Block
|
||||
if len(v[3]) == 1 or v[3][1] == True:
|
||||
if len(v[3]) == 1 or v[3][1] is True:
|
||||
for _ in range(get_depth(v[1], depth_multiple)):
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple)
|
||||
layer += "size=3\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
size=3, activation="silu")
|
||||
blocks += 1
|
||||
layer += "\n[shortcut]\n"
|
||||
layer += "from=-3\n"
|
||||
layer += "activation=linear\n"
|
||||
layer += yoloLayers.shortcut(route=-3)
|
||||
blocks += 1
|
||||
# Merge
|
||||
layer += "\n[route]\n"
|
||||
layer += "layers=-1, -%d\n" % (3 * get_depth(v[1], depth_multiple) + 3)
|
||||
layer += yoloLayers.route(layers="-1, -%d" % (3 * get_depth(v[1], depth_multiple) + 3))
|
||||
blocks += 1
|
||||
else:
|
||||
for _ in range(get_depth(v[1], depth_multiple)):
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0] / 2, width_multiple)
|
||||
layer += "size=3\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
size=3, activation="silu")
|
||||
blocks += 1
|
||||
# Merge
|
||||
layer += "\n[route]\n"
|
||||
layer += "layers=-1, -%d\n" % (2 * get_depth(v[1], depth_multiple) + 3)
|
||||
layer += yoloLayers.route(layers="-1, -%d" % (2 * get_depth(v[1], depth_multiple) + 3))
|
||||
blocks += 1
|
||||
# Transition
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0], width_multiple)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += "\n##########\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "SPPF":
|
||||
layer = ""
|
||||
layer = "\n# SPPF\n"
|
||||
blocks = 0
|
||||
layer += "\n# SPPF\n"
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % (get_width(v[3][0], width_multiple) / 2)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple) / 2,
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
layer += "\n[maxpool]\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "size=%d\n" % v[3][1]
|
||||
layer += yoloLayers.maxpool(size=v[3][1])
|
||||
blocks += 1
|
||||
layer += "\n[maxpool]\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "size=%d\n" % v[3][1]
|
||||
layer += yoloLayers.maxpool(size=v[3][1])
|
||||
blocks += 1
|
||||
layer += "\n[maxpool]\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "size=%d\n" % v[3][1]
|
||||
layer += yoloLayers.maxpool(size=v[3][1])
|
||||
blocks += 1
|
||||
layer += "\n[route]\n"
|
||||
layer += "layers=-4, -3, -2, -1\n"
|
||||
layer += yoloLayers.route(layers="-4, -3, -2, -1")
|
||||
blocks += 1
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "batch_normalize=1\n"
|
||||
layer += "filters=%d\n" % get_width(v[3][0], width_multiple)
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "activation=silu\n"
|
||||
layer += "\n##########\n"
|
||||
layer += yoloLayers.convolutional(bn=True, filters=get_width(v[3][0], width_multiple),
|
||||
activation="silu")
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "nn.Upsample":
|
||||
layer = ""
|
||||
layer = "\n# nn.Upsample\n"
|
||||
blocks = 0
|
||||
layer += "\n[upsample]\n"
|
||||
layer += "stride=%d\n" % v[3][1]
|
||||
layer += yoloLayers.upsample(stride=v[3][1])
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "Concat":
|
||||
layer = ""
|
||||
blocks = 0
|
||||
route = v[0][1]
|
||||
r = 0
|
||||
if route > 0:
|
||||
for i, item in enumerate(layers):
|
||||
if i <= route:
|
||||
r += item[1]
|
||||
else:
|
||||
break
|
||||
else:
|
||||
route = len(layers) + route
|
||||
for i, item in enumerate(layers):
|
||||
if i <= route:
|
||||
r += item[1]
|
||||
else:
|
||||
break
|
||||
layer += "\n# Concat\n"
|
||||
layer += "\n[route]\n"
|
||||
layer += "layers=-1, %d\n" % (r - 1)
|
||||
layer += "\n##########\n"
|
||||
route = yoloLayers.get_route(route, layers) if route > 0 else \
|
||||
yoloLayers.get_route(len(layers) + route, layers)
|
||||
layer = "\n# Concat\n"
|
||||
blocks = 0
|
||||
layer += yoloLayers.route(layers="-1, %d" % (route - 1))
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
elif v[2] == "Detect":
|
||||
for i, n in enumerate(v[0]):
|
||||
layer = ""
|
||||
route = yoloLayers.get_route(n, layers)
|
||||
layer = "\n# Detect\n"
|
||||
blocks = 0
|
||||
r = 0
|
||||
for j, item in enumerate(layers):
|
||||
if j <= n:
|
||||
r += item[1]
|
||||
else:
|
||||
break
|
||||
layer += "\n# Detect\n"
|
||||
layer += "\n[route]\n"
|
||||
layer += "layers=%d\n" % (r - 1)
|
||||
layer += yoloLayers.route(layers="%d" % (route - 1))
|
||||
blocks += 1
|
||||
layer += "\n[convolutional]\n"
|
||||
layer += "size=1\n"
|
||||
layer += "stride=1\n"
|
||||
layer += "pad=1\n"
|
||||
layer += "filters=%d\n" % ((nc + 5) * len(masks[i]))
|
||||
layer += "activation=logistic\n"
|
||||
layer += yoloLayers.convolutional(filters=((nc + 5) * len(masks[i])), activation="logistic")
|
||||
blocks += 1
|
||||
layer += "\n[yolo]\n"
|
||||
layer += "mask=%s\n" % str(masks[i])[1:-1]
|
||||
layer += "anchors=%s\n" % anchors
|
||||
layer += "classes=%d\n" % nc
|
||||
layer += "num=%d\n" % num
|
||||
layer += "scale_x_y=2.0\n"
|
||||
layer += "beta_nms=0.6\n"
|
||||
layer += "new_coords=1\n"
|
||||
layer += "\n##########\n"
|
||||
layer += yoloLayers.yolo(mask=str(masks[i])[1:-1], anchors=anchors, classes=nc, num=num)
|
||||
blocks += 1
|
||||
layers.append([layer, blocks])
|
||||
for layer in layers:
|
||||
|
||||
Reference in New Issue
Block a user